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C Examples

C.1 Example: Standard Noisy Information Model in Generic Learn-

ing Framework

In this subsection I take the standard noisy information model as an example and show how

it can be represented by the Generic Learning Framework. The purpose of this example

are three folds. First it gives an example of essential elements in the Generic Learning Model

including hidden states Θi,t, Average Structural Function and the transformed dynamic system

(6) in the context of a familiar learning model. Secondly it illustrates how RNN performs in

approximating the ASF (in this case linear) and estimating marginal effect without knowledge

of the exact functional form of learning model. Lastly as I consider a special case when

the expectation formation structure is still linear but OLS is mis-specified and show the

performance of RNN in estimating the average marginal effect. This exercise illustrates the

possible improvement in using RNN even in a linear case.
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Data Generating Process: Consider agents want to predict inflation one period from

now denoted as πi,t+1|t. At time t, they can observe two signals {πi,t, si,t}. There are two

latent variables {πt, Lt} that they need to make inference of to form expectation of inflation.

Represent the Actual Law of Motion as a Gaussian Linear State Space Model:

[
πt

Lt

]
≡ Xt = AAAXt−1 + εt (42)

Where AAA describes how latent states Xt evolves along time, εt is i.i.d shock each period.

Assume for simplicity the agent’s Perceived Law of Motion is the same as (42). Agents do

not observe Xt directly, instead they observe a noisy signals about it. Their observational

equation is: [
πi,t

si,t

]
≡ Oi,t = GGGXt + νi,t (43)

Both shock εt and νi,t are i.i.d and follow normal distribution with covariance matrix R and

Q:

εt ∼ N(0, R) νi,t ∼ N(0, Q)

This describes the standard noisy information model with two latent states. They use a

stationary Kalman Filter to form prediction of the latent variable Xi,t+1|t, where KKK is the

Kalman Gain.

[
πi,t+1|t

Li,t+1|t

]
≡ Xi,t+1|t = AAA(Xi,t|t−1 +KKK(Oi,t −GGGXi,t|t−1)) (44)

The Generic Learning Formulation The stationary Kalman Filter is a special case of

Generic Learning Model. First notice the i.i.d error νi,t satisfies assumption 2. The expectation

is also formed by filtering step and updating step:

Xi,t|t = Xi,t|t−1 +KKK(Oi,t −GGGXi,t|t−1) (Filtering Step)

Xi,t+1|t = AAAXi,t|t (Forecasting Step)

Replace Xi,t+1|t with Ŷi,t+1|t and define the ”now-cast” variable Xi,t|t as latent state variable

Θi,t in Generic Learning Model, we can re-write Kalman Filter (44) as equation (45) and (46),

which reflect the generic formulation of updating step (2) and forecasting step (3). It is obvious

that in the stationary Kalman Filter case, both F (.) and H(.) are linear.

Ŷi,t+1|t = AAAΘi,t (45)

Θi,t = (A−KGAA−KGAA−KGA)Θi,t−1 +KGKGKGXt +KKKνi,t (46)

2



Average Structural Function I then turn to the ASF implied by Kalman Filter (45) and

(46). This is simply done by taking expectation of Ŷi,t+1|t conditional on observables Xt. The

goal is to integrating out the i.i.d noise term νi,t which is not observable by econometrician.

Now we can define the sufficient statistics for Θi,t as:

θi,t = E[Θi,t|{Xτ}tτ=0] (47)

Taking the expectation of (45) and (46) conditional on history of the observable {Xτ}tτ=0

it immediately follows:

yi,t+1|t ≡ E[Ŷi,t+1|t|{Xτ}tτ=0] = AAAθi,t

θi,t = (A−KGAA−KGAA−KGA)θi,t−1 +KGKGKGXt

This illustrates the link between ASF with the underlying expectation formation model:

in the linear case with mean zero error νi,t, the function form from ASF, f(.) and h(.) are

linear and are identical to those from the underlying expectation formation model.

Estimation with Simulated Sample Now suppose as econometricians we want to esti-

mate marginal effect of two signals {πt, si,t} on πi,t+1|t. The standard approach is to directly

estimate the reduced-form equation derived from (44) with OLS. This requires Xi,t+1|t ob-

served for each t and the learning model is correctly specified. However in reality it is possible

that expectation on latent state Li,t+1|t is not observable or not considered in the model1. If

this is the case OLS with only lag term πi,t|t−1 is included in the regression suffers from omitted

variable problem.

On contrary, estimation with RNN does not require a correct specification on latent variable

Θi,t, and it doesn’t need Li,t|t−1 to be observable at all. To show this I simulated 100 random

samples according to the Kalman Filter as in (44). In this experiment I consider three different

models to estimate marginal effect of the two signals {πt, si,t}: (1) the RNN with sequence

of {πτ , si,τ}tτ=0 and lag expected inflation πi,t|t−1 as input2; (2) mis-specified OLS that uses

the same set of variables as dependent variable, the OLS is mis-specified because Li,t+1|t is

not available to econometricians; (3) correctly specified OLS with Li,t+1|t observable, which is

typically not available. I’ll show RNN can still recover the linear relationship between signal

1For example, when agent form expectation on inflation, if they believe in a three equation New Keynesian

Model, they may also want to infer demand and supply shocks as unobserved states. In a Kalman Filter that

takes only inflation as unobserved state, OLS will suffer from omitted variable problem.
2Interestingly, for estimating ASF and marginal effect, one do not need to include the lag expectation

πi,t|t−1 in RNN, only history of signals are sufficient. The results without lag expectation are similar to these

results I include here.
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and expectational variable as well as obtain comparable estimate on signals as the correctly

specified OLS estimator (BLUE in this case), whereas mis-specified OLS is heavily biased.

I first depict the recovered average structural function between inflation expectation πi,t+1|t

and signals πt, si,t in Figure 6. The red solid line is the true Average Structural Function

implied by the Kalman Filter (44) and the black solid line is the mean of estimated ASF from

100 random samples using RNN. I also plot estimated ASF for each sample in grey color.

The top panel in Figure 6 is the ASF along dimension of realized inflation πt and the bottom

panel is along signal si,t. It is obvious that the estimated ASF all indicate linear relationship

between signals and expected inflation. This means RNN will recover a linear function if the

underlying expectation formation model is indeed linear. It also shows the stability of the

performance of RNN: with 100 random samples it recovers the ASF relative close to the truth.

Figure 6: Estimated Average Structural Function from random samples using RNN. Function depicts change

of expected variable in response to corresponding signal change by δ. Panel (a): expected inflation as function

of inflation signal πt. Panel (b): expected inflation as function of private signal si,t. Red solid line is the

actual ASF implied by linear Kalman Filter. Solid black line is the mean of estimated ASF from 100 random

samples. Grey lines are estimated ASFs from each random sample.

I then report the (naive) estimates of marginal effects from RNN and compare them to

those from the other two models considered. The following table shows the estimation result

from RNN, mis-specified OLS and correctly specified OLS. In this table, the first column is

mean squared error on the whole sample, the second column is estimated marginal effect on

4



signal πt and third column is estimated marginal effect on signal si,t. In brackets I report the

standard deviation of the estimate using 100 simulated random samples. Not surprisingly,

correctly specified OLS is BLUE in this case with unbiased estimates and small standard

deviations. However the key thing to notice here is that mis-specified OLS is biased due to

the omitted latent state, whereas RNN has result that is consistent with the true marginal

effect, with acceptable standard deviations across 100 samples.

Table 7: Performance of RNN v.s. OLS

MSE πt si,t

(1) RNN 2.91 0.82 0.276

(0.054) (0.037) (0.003)

(2) OLS mis-specified 3.296 0.720 0.279

(0.023) (0.033) (0.001)

(3) OLS correct 2.835 0.841 0.277

(0.014) (0.005) (0.001)

Truth 0.842 0.277

* The first column is mean squared error on the whole

sample, the second column is estimated marginal effect

on signal πt and third column is estimated marginal

effect on signal si,t. In brackets I report the standard

deviation of the statistics using 100 simulated random

samples.

C.2 Example: Constant Gain Learning in Generic Learning Frame-

work

In this subsection I will illustrate how a standard Constant Gain Learning model can be

analytically expressed in the form of the Generic Learning Framework. An example of such

model is from Evans and Honkapohja (2001). For simplicity I consider the one dimensional

case, where an agent observes realized inflation πt at each time t and try to form forecast about

πt+1. I also drop the individual indicator i to same some notations, but the framework can be

easily generalized to multi-dimensional multi-agent case. The agent believes in a ”Perceived

Law of Motion” (PLM) about how inflation is evolving in time and try to estimate the relevant

parameters in the PLM using observed data. To do this, she will run OLS at every period

and apply a constant weight to the newly available data. With this learning scheme agent

perceives different values for parameters in their PLM and form expectation accordingly. The

model features a constant gain γ, which represents the weight the agent put on newly observed

data. Let’s assume the PLM the agent believes in is an AR(1) process:
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πt+1 = b0 + b1πt + ηt+1 (PLM)

In this setup, the parameters agent try to learn from realized data are b0 and b1. ηt+1

stands for the mean zero i.i.d random shock realized in each period. The agent uses and OLS

method to estimate b0 and b1 every period, and this process can be formulated recursively

such that in each period the agent forms a different estimate bt:

bt = bt−1 + γR−1
t XXX t−1(πt − b′t−1XXX t−1)

Rt = Rt−1 + γ(XXX t−1XXX
′
t−1 −Rt−1)

XXX t = [1 πt]
′ b = [b0 b1]′

At time t, the agent then forms expectation about future inflation using the PLM, with

some i.i.d noise attached on top of the endogenous component that comes from constant gain

learning process, εt. This exogenous component is sometimes interpreted as ”sentiment”, for

example in Cole and Milani (2020).

Etπt+1 = b′tXXX t + εt (48)

Now suppose the agent is learning with the above set-up. As observers we see: XXX t, Etπt+1

up to each time t. We do not see the hidden variables such as bt and Rt. We also don’t know

the function form that connects the hidden variables, observables and expectational variables.

The goal now is to represent the system described by this constant gain learning model in

terms of the Generic Learning Framework. Define the hidden states Θt = [XXX t, bt, Rt, εt]
′. The

recursive mapping from observables (and previous hidden states) to hidden states H(.) then

can be given by:

Θt = H(XXX t,Θt−1, εt)

Where

XXX t ≡ H1(XXX t,Θt−1, εt) = XXX t

Rt ≡ H2(XXX t,Θt−1, εt) = Rt−1 + γ(XXX t−1XXX
′
t−1 −Rt−1)

bt ≡ H3(XXX t,Θt−1, εt) = bt−1 + γR−1
t XXX t−1(πt − b′t−1XXX t−1)

εt ≡ H4(XXX t,Θt−1, εt) = εt

Notice here, as Θt can be any measurable function of XXX t, Θt−1 and εt, it can certainly

contain elements such as the inputXXX t. AlthoughXXX t is actually observable, it remains ”hidden”

to econometrician as without further knowledge on expectation formation process, one will

not know what the exact mapping from observables to elements of Θt is. Then the expectation

formation model F (.) is given by:
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Etπt+1 ≡ F (Θt) = b′tXXX t + εt

Now I show that the expectation formed by constant gain learning can be analytically

represented by the Generic Learning Framework described by updating step (2) and forecasting

step (3). The Average Structural Function implied by this setup is straight forward: one can

define θt = [XXX t, bt, Rt]
′ and obtain f(.) and h(.) by integrating out the i.i.d random variable

εt.

D Appendix on Empirical Findings

D.1 More on Time-varying Marginal Effect

Figure 7:
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To show the same attention shift pattern holds for all signals and expectations related to

economic condition, I first plot the same heatmap for marginal effect of unemployment signals

on expectation on unemployment change. This is Figure 7 below. It shows the same pattern

holds as in Figure 3: in recession marginal effect of future signal is bigger and the opposite is

true for past signal.

For marginal effects of cross-signals, for example, the impact of unemployment signal on

economic condition expectation. These results are shown in Figure 8 below. It shows first

unemployment signals generally have negative impact on expectation of economic condition.

Furthermore, when looking at marginal effects of past signals, such an impact is again weak

during recession periods whereas the marginal effects of future signals are again with bigger

magnitudes during recessions.

Figure 8:

However these attention shift during recession and ordinary period only holds significantly

for expectations and signals related to indicators about economic conditions. Figure 9 plots

the time-varying marginal effects for indicators on inflation and interest rate, there is no such

attention shift at presence. The DML estimator also suggest the average marginal effects in

recession and ordinary periods are not significantly different.
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Figure 9:

D.2 Robustness of DML using NBER Recessions

Table 8: Average Marginal Effect of Past and Future Signals: NBER Recession

Expectation: E∆yt+1|t E∆ut+1|t

Signal βbad βord βbad = βord βbad βord βrec = βord

(std) (std) (p-val) (std) (std) (p-val)

Ft∆ut+1 −0.047∗∗∗−0.047∗∗∗−0.047∗∗∗ 0.005 ¡0.01 0.033∗∗∗0.033∗∗∗0.033∗∗∗ 0.009∗∗∗ ¡0.01

Future Signal (0.006) (0.002) (0.004) (0.002)

Ft∆yt+1 0.05∗∗∗0.05∗∗∗0.05∗∗∗ 0.02∗∗∗ ¡0.01 −0.024∗∗∗−0.024∗∗∗−0.024∗∗∗ −0.01∗∗∗ ¡0.01

(0.007) (0.003) (0.003) (0.001)

∆ut −0.016∗ −0.018∗∗∗ 0.86 0.012∗∗∗ 0.01∗∗∗ 0.74

Past Signal (0.008) (0.003) (0.005) (0.002)

∆yt 0.003 0.015∗∗∗0.015∗∗∗0.015∗∗∗ 0.05 −0.004∗∗ −0.01∗∗∗−0.01∗∗∗−0.01∗∗∗ 0.04

(0.004) (0.002) (0.002) (0.001)

* ***,**,*: Significance at 1%,5% and 10% level. βbad is average marginal effect in bad periods defined by NBER

recession dates, βord is average marginal effect in ordinary period. βbad = βord is test on equality between

average marginal effects, its p-value is reported for each expectation-signal pair. Bold estimates denote the

marginal effect with significantly bigger magnitude. Standard errors are adjusted for heteroskesticity and

clustered within time.
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Table 8 shows the DML estimates for marginal effects of past and future signals on real GDP

growth and unemployment rate, during or out of recession. And the recession dates in use

are those from NBER. Although ”bad times” defined in Section 4.2.2 are considered more

plausible for reasons discussed before, using NBER recession dates won’t qualitatively change

the DML estimates much. Future signals still significantly have higher weights during bad

periods and the weights on past signals are usually with bigger magnitude in ordinary period.

D.3 Decompose Time-varying ME with other signals

Figure 10: Time-varying marginal effect of past and future signal on real GDP growth. Top panel: marginal

effect of future signal, βEyFy,t; bottom panel: marginal effect of future signal, βEyy,t . The red curve: marginal

effect created by estimated ASF with all signals. The blue curve: marginal effect created by ASF with only

exposure of economic condition news.

Figure 10 presents how news exposure affects the marginal effects on future and past

signals. It shows that news exposure only creates higher weights on future signals (from SPF)

exactly when there is more news on economic status but not the weight change of past signals.

According to Table 4, news exposure only accounts for 28% and 15% time-variation of weights

on future and past signals, whereas economic conditions alone explain more than 50%. These

suggest the explanation that attention-shift is majorly a result of more information available

in recessions is unlikely to be true. On the other hand, economic condition signals without

news exposure successfully recreate the key attention-shift pattern. This indicates economic

condition signals explain a much bigger fraction of the time variation and are likely to be the
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main driving force for attention shift.

In Figure 11 I report the same exercise as in Figure 4 and 10 but with only signals on

inflation, interest rate, and oil prices as input. The results show that information on prices

alone cannot recreate the attention-shift pattern.

Figure 11: Time-varying marginal effect of past and future signal on real GDP growth. Top panel: marginal

effect of future signal, βEyFy,t; bottom panel: marginal effect of future signal, βEyy,t . The red curve: marginal

effect created by estimated ASF with all signals. The blue curve: marginal effect created by ASF with only

interest rate and inflation signals.

D.4 Variance Decomposition for Unemployment Expectation

In Table 9 I summarize the variance decomposition of time varying marginal effects of unem-

ployment signal on unemployment expectations. It is consistent with what I find for expecta-

tion on economic condition. First the signals that explain most of the time-variation are those

related to economic conditions. News exposure also explain a significant part of variation,

especially for past signals. Finally these signals affect expectations through both accumulated

states and covariates. Current signal usually plays a more important role in explaining the

time-variation.

E Model Appdendix
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Table 9: Variance Decomposition of Time-varying Marginal Effects: E∆u

Marginal Effect on Past Signal: βEuu,t

Signal Type: Economic Condition Inflation Interest rate News Total

State θi,t−1 28% 3% 6% 20% 57%

Channel: Covariate Zi,t 23% 2% 13% 5% 43%

Total 52% 5% 18% 25%

Marginal Effect on Future Signal: βEuFu,t

Signal Type: Economic Condition Inflation Interest rate News Total

State θi,t−1 19% 6% 7% 4% 36%

Channel: Covariate Zi,t 36% 4% 9% 15% 64%

Total 54% 10% 16% 19%

E.1 Signals and Beliefs

At the beginning of time t, agent is endowed with some prior beliefs on states dt and ηt, this

reflects the latent states in empirical part. I denote the prior of foundamentals as:

XXX0 ≡

[
d0

η0

]
∼ N(X̂XX0,Σ0)

Where X̂XX0 stands for prior mean of the states XXX t.
3

The agent is Bayesian Learner and forms posterior beliefs using Kalman Filter. Agent

updates his belief twice: first, he is exposed to a normal noisy signal z0 about current state

dt. The variance of the noise is σ2
z . The agent then updates her belief on XXX t. Because both

prior and noise are normally distributed, the updated prior is also normal.

XXX t|0 ≡

[
dt|0

ηt|0

]
∼ N(X̂̂X̂X t|0,Σt|0)

I define XXX t|0 as conditional prior as it contains information about dt. Specifically, its mean

X̂̂X̂X t|0 is a function of the unconditional prior mean and signal z0, which contains information

about dt and noise. However, the agent has no control of the variance of this noise σ2
z . It will

3In steady state one can think of the prior mean being at the long-run mean of each state, which is 0.

When an agent observes a history of signals before time t, she may have a prior mean different from 0. This

then can be thought of as a form of the “internal states” described in Section 4.2.4.
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not be in the agent’s choice set and will be treated as given when the agent solves the rational

inattention problem later.

The second time the agent updates belief is after observing signal ZZZt. He forms a posterior

belief about the fundamentals next period. As this is a two-period model, only belief on dt+1

is relevant. Again the agent forms belief using Bayes Rule:

XXX t+1|t ≡

[
dt+1|t

ηt+1|t

]
∼ N(X̂̂X̂X t+1|t,Σt+1|t)

Where posterior mean X̂̂X̂X t+1|t and variance Σt+1|t is defined as:

X̂̂X̂X t+1|t ≡ E[XXX t+1|ZZZt] = A

(
(I −KG)X̂̂X̂X t|0 +KZtZtZt

)
(49)

Σt+1|t = AΣt|0A
′ − AKGΣt|0A

′ +QQQ (50)

And Kalman Gain is given by (51), where matrices A and G are given by exogenous

parameters {ρ, ρη} about the fundamentals.

K = Σt|0G
′(GΣt|0G

′ +R)−1 (51)

From (49)-(51), the choices of signal precision will affect both mean and variance of his

posterior through the variance-covariance matrix on noise, R. Signals with lower variance are

more accurate, and the agent will put higher weights on these signals. Each different choice

of signal accuracy (represented by the variance-covariance matrix on noise, R) gives the agent

a different information set. Given different information sets, the agent will form different

posterior beliefs even if the signals realized are the same.

E.2 Two Special Information Set

At this point, it is worth describing several special information sets:

dt Fully Observable: At time t, an agent has only perfect information about dt and no

information on ηt. This happens when σ2,ξ = 0 and σ1,ξ → ∞. In this case agent will form

adaptive expectation about return in the future: EA
t dt+1 = ρdt.

Both fundamentals XXX t Fully Observable: At time t, an agent has all the information

about fundamentals at time t. Given the distribution of ε1,t+1, an agent with this information

set can form a posterior belief on the distribution of dt+1 with mean being expressed as (23).

This can be thought of as the Full Information Rational Expectation benchmark in this model

as the forecasting error in this case will only be the unpredictable shock ε1,t+1.
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An information set with an arbitrary variance-covariance matrix on noise, R, can be

thought of as being in the middle of the two information sets described above. For each infor-

mation set It given, the agent will solve her optimization problem (17) accordingly. Different

information sets will then result in different choices, thus giving the agent different expected

utility. In this sense, information has a value that can be evaluated with her expected utility.

I will first illustrate the value of information in this model using different information sets

described here.

E.3 State-dependent Value of Information

In this section, I explicitly compute the agent’s expected utility conditional on different infor-

mation sets given. I will illustrate that more information is valuable to agents as it increases

their expected utility. Furthermore, the improvement of expected utility obtained by possess-

ing more information depends on the current state of the economy, dt.

I solve problem (18) under the two different information sets introduced before as well as

the case with no extra information. Then I evaluate the agent’s ex ante expected utility.

E[u(et − s∗t+1(It)) + βu(rt+1s
∗
t+1(It) + et+1)|I0]

Recall the utility function takes the form u(ct) = ct − bc2
t , and in the information set I0, it

contains information about the current state dt. The state-dependency seen later comes from

the fact that the value of information changes as the mean of prior contained in I0 changes.

The quadratic function form makes the point that the common mean-independent result of the

rational inattention model is not due to linear quadratic preference per se, rather it’s because

of the quadratic approximation for the entire problem. However, the results are not restricted

to such a utility function form. Recall that given different information set It, the first order

condition for problem (18) takes the form:

s∗t+1(It) =
−1 + 2bet + (β − 2bβet+1)E[rt+1|It]

2b(1 + βE[r2
t+1|It])

(52)

For illustration purposes, I solve the model numerically using the following parametrization:

b = 1/40, β = 0.95, et = 10 and et+1 = 5. For the fundamentals I consider ρ = 0.2, ρd = 0.9,

σ1,ε = σ2,ε = 0.15. The prior beliefs on states dt and ηt are assumed to be mean zero with

the stationary variance-covariance matrix obtained from the recursive Kalman Filter. The

standard deviation of noise on passive signal is σz = 0.22. In Figure 12 I plot the ex ante

expected utility conditional on various information sets, as functions of realized dt. The thick

black curve is expected utility when there’s no more information other than the initial passive

signal on dt available to the agent. The thick blue curve is expected utility when dt is fully

observable and the thick red curve is when both SPF and dt are fully observable (the FIRE
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benchmark)4. The curves between the thick lines depict the increase in expected utilities as

the precision of the signal increases (or the variance of noise decreases).

Figure 12: Expected Utility under Different Information Set

Black thick line: Expected utility when no more information other than initial passive signal on dt; blue thick

line: expected utility when dt becomes fully observable; red thick line: when both SPF and dt fully observable.

Blue thin lines are expected utilities when there are noise attached to extra signal on dt, the more accurate the

signal, the closer it gets to dt fully observable case. Red thin lines are expected utilities when noise attached

to signal on SPF, and dt is fully observable. The more accurate the signal, the closer it gets to full information

case.

There are two key messages from Figure 12. First, more information improves the agent’s

expected utility progressively: with a more accurate signal on dt, the agent resolves the uncer-

tainty about the current state and his utility increases at any given dt from the black line to

the blue line; and it continues to increase as the signal on SPF becomes more accurate, from

blue curve to red curve. This is a typical result of informational models.

Secondly and more importantly, the value of information is decreasing in realized state dt.

This can be seen from the differences between expected utilities with different information

sets. When realized state dt is low and negative, getting the same amount of information

will increase the agent’s expected utility by more than the case when dt is high. In other

4With the specific law of motion assumed in (19) - (21) together with definition of SPF (23), the case with

only SPF fully observable will coincide with the FIRE case.
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words, information is more valuable when the economic status is bad. This is a result different

from that of standard rational inattention literature. The reason for such a difference is the

non-linearity in the optimal saving/investment function.

The difference between expected utility comes from differences of optimal investment (52).

The fact that optimal saving is a non-linear function of both posterior mean and posterior

variance of state dt+1 makes the expected utility mean-dependent. To see this, we can utilize

the assumption of the quadratic utility function, and re-write the expected utility as the

following form:

E[U(s∗t+1(It))] = E[(et − st+1)− b(et − st+1)2 + β(et+1 + rt+1st+1)− βb(et+1 + rt+1st+1)2]

= E[− b(1 + βr2
t+1)︸ ︷︷ ︸

≡χ

s2
t+1 + (2bet − 1 + βrt+1 − 2βbet+1rt+1)st+1 + (et − be2

t + βet+1 − βbe2
t+1)]

= E[−χ(s2
t+1 −

2bet − 1 + βrt+1 − 2βbet+1rt+1

χ︸ ︷︷ ︸
≡2s̄t+1

st+1 +
(2bet − 1 + βrt+1 − 2βbet+1rt+1)2

4χ2
)

+
(2bet − 1 + βrt+1 − 2βbet+1rt+1)2

4χ
+ (et − be2

t + βet+1 − βbe2
t+1)]

= −E[χ(st+1 − s̄t+1)2] + E[
(2bet − 1 + βrt+1 − 2βbet+1rt+1)2

4χ
+ (et − be2

t + βet+1 − βbe2
t+1)]︸ ︷︷ ︸

≡M

Note in the above derivation all the expectations are conditional on initial information set

I0. M has nothing to do with information set It, thus the evaluating the expected utility under

choice of It is equivalent to evaluating the quadratic loss term E[χ(s∗t+1(It)− s̄t+1)2]. This is a

standard result from literature of Rational Inattention with linear quadratic preference. The

key difference here is s∗t+1 is non-linear in fundamentals.5 We can then write ante expected

utility as a form of “quadratic loss”:

E[U(s∗t+1(It))|I0] = −E[χ(s∗t+1(It)− s̄t+1)2|I0] +M (53)

The variable s̄t+1 is given by (54). It stands for the optimal investment under perfect foresight

when the agent observes dt+1 perfectly.

s̄t+1 =
−1 + 2bet + βrt+1 − 2bβrt+1et+1

2b(1 + βr2
t+1)

(54)

The transformed utility function (53) is usually referred to as a quadratic loss function in

rational inattention models, intuitively agent will seek to minimize the expected loss between

optimal choice under limited information set It and optimal choice under Full Information

Rational Expectation.6 From (53) it is obvious that if the optimal choice of s is linear in state

5In standard rational inattention models, the action will be linear in fundamentals thus optimal choice of

signal will not depend on prior mean of fundamentals. For example, see Maćkowiak et al. (2018) or Kamdar

(2019).
6It is worth noting that M is not involved in choosing the optimal information structure It as it is only

related to the actual distribution of rt+1.
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rt+1, the expected utility only depends on the posterior variance of rt+1 given information set

It. It is not related to the posterior mean of states or realized state at time t.

Using the transformed expected utility (53), I can explore reasons for the value of infor-

mation decreasing in dt. To see this, consider the cases with or without full information from

SPF. Conditional on the realization of a specific dt, without information from SPF agent faces

uncertainty from both ηt and ε1,t+1 being unobservable. With information from SPF uncer-

tainty from ηt is resolved. Because in both cases agents have no information on ε1,t+1, the

utility improvement comes solely from knowledge on ηt. For simplicity, I consider an extreme

case when ε1,t+1 = 0. Then s̄t+1 can be seen as the optimal saving choice when SPF is avail-

able. The utility loss of the agent not having information from SPF can then be evaluated by

differences between optimal savings with or without SPF observable, weighted by the agent’s

subjective belief.

In Figure 13 I depict the optimal saving choices at three realized values of dt: when the

current state is bad (dt = −0.32), neutral (dt = 0) and good (dt = 0.32). In each case, I plot

the optimal saving choice as a function of future state dt+1. The dotted line is the optimal

saving that the agent chooses when he only observes the initial signal on dt. It is a flat line

because the agent’s choice does not depend on dt+1 (or realization of ηt) when SPF is not

observable. The solid line is the optimal saving choice when SPF is observable to the agent.

This line is a function of dt+1 because under the assumption ε1,t+1 = 0, when SPF is observable

then ηt and dt+1 are fully observed. An important feature is then this function is increasing

and concave in dt+1. This is because the higher the return dt+1 is, the more agent wants to

save. The concavity comes from the fact that the substitution effect becomes weaker as the

return on asset increases and is finally dominated by the income effect.7

Now for agents without information from SPF, the solid line is not feasible. For a given

realized dt, the agent will evaluate her utility loss of not having information on ηt following

(53). This is done by measuring the distance between optimal saving choices with and without

information from SPF and computing the expected value of (the square of) this distance using

their posterior belief on dt+1 (ηt). In Figure 13 this belief is shown with a bar plot. When

realized dt is higher, the belief of distribution on dt+1 is centered at a higher mean. Because

of the non-linearity of the optimal saving choice, the average distance between saving choices

with and without information from SPF is higher when dt is low. This gives rise to the fact

that value of information from SPF is decreasing in dt.

With the simple structure presented above, I show the key pattern my model generates:

the value of information decreases in the state of the economy. The agent is willing to pay

higher costs to acquire information as the state of the economy gets worse. This gives the

key mechanism to create the time-varying marginal effect and non-linearity I documented

7Interestingly, if one would instead assume a riskless asset with a risky endowment in t + 1, the optimal

saving curve under full information will be linear and the value of information won’t depend on the current

state anymore.
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Figure 13: Optimal Saving under Full Information and Limited Information

Solid line: optimal saving choice under full information: when both dt and SPF are fully observable. Dash

line: optimal policy when SPF signal is not available. Bar plot: agent’s subjective belief on future state dt+1,

when SPF is not observable. Top left panel is when current state is very bad (dt = −0.32), top right panel is

when dt = 0 and bottom left panel is when current state very good, dt = 0.32.

with RNN. Because when agents can choose the precision of signals (thus information set)

optimally, they will make different choices during bad and ordinary times and this will result

in different weights on these signals.

E.4 Derivation of Information Cost

In this subsection, I derive the information cost measured by entropy in (25) following Mack-

owiak and Wiederholt (2009). Recall the state-space representation of fundamentals are:

XXX t+1 = AXXX t + εεεt, εεεt ∼ N(000,QQQ)

The initial noisy signal z0 and chosen signals ZZZt are given by:

z0 = dt + ξ0 = G0XXX t + ξ0, G0 = [1 0]

ZZZt = GXXX t + ξξξt, ξξξt ∼ N(000, R)
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First notice all the random variables XXX t, z0, ZZZt are normally distributed. The information set

I0 only contains a noisy Gaussian signal z0, the entropy of XXX t+1 given I0 is then:

H(XXX t+1|I0) = H(XXX t+1|z0) =
1

2
log2[(2πe)2detΣt+1|0] (55)

Where Σt+1|0 denotes the variance-covariance matrix of XXX t+1 given z0. The prior variance

covariance matrix of XXX t is denoted as Σ0, then the conditional variance-covariance matrix

Σt+1|0 is given by:

Σt+1|0 = AΣt|0A
′ +QQQ (56)

Where:

Σt|0 = Σ0 − Σ0G
′
0(G0Σ0G

′
0 + σ2

z)
−1G0Σ0 (57)

It is obvious Σt|0 by construction the posterior variance-covariance matrix for hidden states

XXX t after observing z0 derived from Kalman Filter.

Then recall It = I0 ∪ {ZZZt}, similar as above we have:

H(XXX t+1|It) = H(XXX t+1|z0,ZZZt) =
1

2
log2[(2πe)2detΣt+1|t] (58)

Where:

Σt+1|t = AΣt|0A
′ − AΣt|0G

′(GΣt|0G
′ +R)−1GΣt|0A

′ +QQQ (59)

Again by construction, the Σt+1|t is the posterior variance-covariance matrix for XXX t+1 after

observing {z0,ZZZt} derived from Kalman Filter. Moreover, it is obvious the uncertainty after

observing ZZZt is reduced compared to the uncertainty after only observing z0.

Now information cost is obtained by measuring uncertainty reduction induced by extra

information, using (58) and (55) we have the information cost in (25):

H(XXX t+1|I0)−H(XXX t+1|It) =
1

2
log2(

detΣt+1|0

detΣt+1|t
)

E.5 Derivation of E[rt+1|It] and E[r2
t+1|It]

From (49): (
E[dt+1|It]
E[ηt+1|It]

)
≡ X̂̂X̂X t+1|t = A

(
(I −KG)X̂̂X̂X t|0 +KZtZtZt

)
Where X̂XX t|0 = E[XXX t|I0] is the mean of belief on XXX t after observing passive signal z0. The prior

before observing z0 is denoted as XXX0 ∼ N(X̂XX0,Σ0) from Section E.1. Now denote the Kalman

Gain for observing z0 as K0, we can write:

X̂̂X̂X t|0 = (I −K0G0)X̂XX0 +K0z0 (60)
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Where G0 = ι = [10] as defined in Appendix E.4 and K0 is given by:

K0 = Σ0G
′
0(G0Σ0G

′
0 + σ2

z)
−1 (61)

Combine (49), (60) and (61) we have:

E[rt+1|It] = 1 + ιA

(
(I −KG)

(
(I −K0G0)X̂XX0 +K0z0

)
+KZt

)
= 1 + ιA

(
(I −KG)

(
(I − Σ0G

′
0(G0Σ0G

′
0 + σ2

z)
−1G0)X̂XX0 + Σ0G

′
0(G0Σ0G

′
0 + σ2

z)
−1z0

)
+KZt

)
(62)

Before I show the derivation of E[r2
t+1|It], it’s useful to consider what is V ar(dt+1|It). It

is the first element of posterior variance covariance matrix Σt+1|t, which is given by (59). So

V ar(dt+1|It) can be written as:

V ar(dt+1|It) = ιΣt+1|tι
′

= ι
(
AΣt|0A

′ − AΣt|0G
′(GΣt|0G

′ +R)−1GΣt|0A
′ +QQQ

)
ι′ (63)

Now we can derive E[r2
t+1|It]:

E[r2
t+1|It] = V ar(rt+1|It) + (E[rt+1|It])2

= V ar(dt+1|It) + (E[rt+1|It])2 (64)

= ι
(
AΣt|0A

′ − AΣt|0G
′(GΣt|0G

′ +R)−1GΣt|0A
′ +QQQ

)
ι′ + (E[rt+1|It])2 (65)

In the above equation, Σt|0 is given by (57), which contains σ2
z and prior variance Σ0. E[rt+1|It]

is given by (62), which depends on prior mean X̂XX0, precision (variance) of the signal R and

passive signal z0. From (62) and (65), it is clear that the optimal saving choice is a non-linear

function of all these variables related to the information friction.

Now to see how the ex-post weights on signal Zt depend on variances of signals R, denote

the weight on SPF signal as wspf and weight on signal about current state as wt, from (62)

we have: (
wspf

wt

)
= (ι′ ι′)AK

= (ι′ ι′)AΣt|0G
′(GΣt|0G

′ +R)−1 (66)

From we see first for given Σt+0, G and A, a lower variance of noise on signal (contained in

R) leads to higher weights put on corresponding signal. Moreover, as Σt|0 is affected by σ2
z ,

the weights on signals also change with σ2
z . This will be verified in Section E.7.1.

E.6 State-dependent Optimal Signals

Now turn to the rational inattention problem (26)-(28). I first show that the trade-off between

the benefit and cost of acquiring information changes with the current state dt. In Figure 14,
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I present the expected utility, information cost and the objective function in (26) when the

current state dt is negative, at mean zero and positive. The left panel describes how the

expected utility changes as the standard error of the current signal (σ2,ξ) changes for the three

cases of dt. Because at a different level of dt, the expected utility for the same signal precision

will be different, I normalize it by the utility at σ2,ξ =∞, which corresponds to the case when

the agent acquires no extra signal on the current state. It is obvious in all three cases of dt,

the higher(lower) the precision(standard error) of the signal, the higher the expected utility

comparing to the no information case. I then present the information cost for all three cases

and show that the information costs are the same across different levels of dt. This is because,

in (30), the passive signal z0 contains information about the current state dt thus making

the expected utility depending on it. Whereas in the information cost (32), the evaluation of

posterior variance is mean-independent, which means only the variance of the passive signal

matters in accessing the information cost so that the cost will not change as dt changes. The

key message from the left panel is that both the cost and the benefit of information increase

with the precision of the current signal. Meanwhile for the same level of signal precision, the

higher the current state dt, the lower the benefit from that signal.

Figure 14: Information Benefit, Information Cost and Households’ Objective: Function of

Current Signal

Left panel: the information benefit is evaluated by expected utility and plotted with solid lines, information

cost is evaluated by entropy cost and plotted with dashed line. Right panel: objective function is obtained by

information benefit minus cost and plotted with solid lines. The figure considers three different cases: current

state is high with dt = 0.07, current state is at its mean dt = 0 and current state is low at dt = −0.07.

Horizontal axis is standard error of noise on current signal, higher s.e. leads to lower weight. Vertical dashed

line in the right panel labels optimal s.e. for current signal in three scenarios.
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The agent’s objective function considers both the cost and benefit of acquiring information.

The right panel of Figure 14 then presents the objective function under the same three cases

of dt. A utility-maximizing agent will choose the current signal with a standard error that

maximizes her objective function. These choices under different states are represented by the

dashed line. The right panel then shows that when the current state is worse, the agent will

choose a higher precision and a lower standard error for the current signal.

These patterns hold true for precision on signals about SPF as well. In Figure 15, I again

show a similar graph as in Figure 14 but for signals on SPF. The major difference between

this figure and Figure 14 is that expected utility is computed assuming σ2,ξ = 0.001, which

means the agent chose a very precise current signal.8 All the objects plotted in Figure 15 are

then functions of the precision on SPF signal, σ1,ξ. Similar to that in Figure 14, we see that

both the benefit and the cost increase when the agent acquires more information on SPF.

Meanwhile, the optimal precision of the SPF signal decreases with the current state dt.

Figure 15: Information Benefit, Information Cost and Households’ Objective: Function of

SPF Signal

Left panel: the information benefit is evaluated by expected utility and plotted with solid lines, information

cost is evaluated by entropy cost and plotted with dashed line. Right panel: objective function is obtained by

information benefit minus cost and plotted with solid lines. The figure considers three different cases: current

state dt = 0,−0.26 and −0.52. For dt > 0 the agent will always choose precision that leads to weight zero

because here I plot all the objects under σ2,ξ = 0.001. Horizontal axis is standard error of noise on future

(SPF) signal, higher s.e. leads to lower weight. Vertical dashed line in the right panel labels optimal s.e. for

future (SPF) signal in three scenarios.

8However, changing the level of σ2,ξ, in this case, will not change the results qualitatively.
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E.7 Comparative Statistics for Rational Inattention Model

I now examine the impacts of changing model parameters σz and prior mean X̂XX0, on the

optimal signal choices.

E.7.1 Impact of Passive Signal Precision σz

An important parameter in the information friction proposed in this chapter is the precision of

the passive signal that the agent is exposed to. This passive signal z0 will contain information

about the current state dt, thus making the agent’s optimal choice of precision dependent on

this state. The precision of this signal then determines the prior variances that the agent

considers to evaluate the benefit and cost for more information. Through this channel, it will

also affect the agent’s optimal choices on signal precisions.

In Figure 16 I show again the optimal weights on current and SPF signals as functions of

current state dt, with different values of σz. The left panel shows the results for weights on

current signals. First, notice higher precision on the passive signal (lower σz) leads to higher

weight on the current signal to start with. This shows up in the figure as a higher weight in the

flat area before the agent puts excess weight on the current signal. Intuitively, this means the

agent already has a better understanding of the current dt before choosing the extra signals

on the current state and SPF. This leads to the fact that in the right panel, the agent with

the lowest σz will start to pay attention to the SPF signal at a relatively higher state, because

the information cost for choosing that precision level is relatively lower to her. An extreme

example will be that when σz = 0, which implies that the agent has perfect information on dt.

In this case, we will see her only choosing an extra signal on SPF starting from a relatively

high value of dt.

Another interesting aspect in Figure 16 is that when the quality of the passive signal is

very low so that σz is quite high, the agent’s optimal choices of signal precisions will not

depend on the current state dt anymore. This is because the passive signal z0 contains almost

no information about dt before the agent chooses her information set. As a result, the agent

will not be able to choose different precisions according to the realization of dt. This result

is also shown in Figure 16 as the case for σz = 0. Moreover, in this case, the agent will not

necessarily choose a very noisy signal about the current state. The optimal precisions will

depend on the prior mean of the agent, which is X̂XX0 = 000 as in the baseline results. Such a

pattern then has an important implication: the weights on signals will not only depend on the

realized current state of the economy dt, it will also depend on the prior mean that the agent

carried on across time. I will illustrate how the optimal weights change with the prior mean

in the next subsection.
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Figure 16: Weights on Signals: Noise on Passive Signal σz

Left panel: model implied weights on current signal as function of actual economic condition dt. Right panel:

model implied weights on SPF signal. Each set of weights corresponds to a different standard error of noise

in the passive signal σz. The baseline results come from σz = 0.18.

E.7.2 Impact of “Internal State”: Prior Mean

Intuitively, when an agent chooses the information set she uses to form expectations, her ex-

ante belief about the future state should matter. This can be seen directly from (30): when

the agent thinks about future state dt+1 before she chooses information set that will generate

ZZZt, her effective prior mean should be:

X̂XX t|0 = (I −K0G0)X̂XX0 +K0z0 (67)

From previous sections, I have shown that the current state of economy dt will affect her choice

of optimal precision through the passive signal z0. For the same reason, the optimal precision

on signals should depend on the prior mean X̂XX0 as well.

The illustration of the impact of prior mean involves several parts. First I want the change

of optimal precision to come solely from the differences of X̂XX0, so I will keep z0 at a fixed

value. Secondly, the reason why the prior mean will affect the optimal precision choice is

that the agent will use the information set {I0} = {XXX t|0} to evaluate her expected utility.

The prior mean vector X̂XX0 will affect this information set thus affecting the agent’s expected

benefit for any precision level. As discussed in section E.3, when the prior makes the agent

believe on average the future state will be worse, she will choose a signal will higher precision.

A straightforward way to illustrate this point is to depict the optimal weights and standard

errors of the signals as functions of the implied posterior mean on dt+1 using the ex-ante

information set I0. For simplicity, I call this “ex-ante belief on dt+1”, defined as:

E[dt+1|I0] = ιA

(
(I −K0G0)X̂XX0 +K0z0

)
(68)
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In Figure 17, I show the optimal weights and standard errors as function of E[dt+1|I0], while

fixing z0 = 0 and dt = 0. This means the variation of the ex-ante belief comes solely from the

differences in X̂XX0.

Figure 17: Weights and Standard Error of Signals: Functions of Prior Beliefs

Left panel: model implied weights on current and future signal as functions of prior mean beliefs on the future

state. Right panel: model implied standard error of the noises attached to current and future signal. The blue

curves are for future (SPF) signal and red curves are for current signal.

Figure 17 shows that the optimal choices of weights (left panel) and precision (in terms of

standard error, right panel) indeed depend on the agent’s prior belief. In particular, when the

prior belief leads to on average a bad state in the future, the agent will first pay more attention

to the current signal, then shift to SPF signal as the implied state getting worse. This piece of

evidence is also consistent with my empirical finding. As the prior mean is accumulated from

the history of signals and usually not observable in the data, it can then be thought of as a

proxy of the “internal state” in my empirical section. As discussed in Section 4.2.4, both the

current state of the economy and the internal state accumulated from the past signals play a

role in creating the state-dependent marginal effects of signals.
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