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Abstract

Most empirical studies on expectation formation models share a common dynamic struc-

ture but impose different functional form restrictions. I propose a flexible non-parametric

method that maintains this dynamic structure to estimate a model of expectation for-

mation using Recurrent Neural Networks. Applying this approach to data on macroeco-

nomic expectations from the Michigan Survey of Consumers and a rich set of signals, I

document three novel findings: (1) agents’ expectations about the future economic con-

dition have asymmetric and non-linear responses to signals; (2) agents’ attentions shift

from signals about the current state to signals about the future as the economic condition

deteriorates ; (3) the content of signals on economic conditions plays the most important

role in creating the attention-shift. Double Machine Learning approach is used to obtain

statistical inferences of these empirical findings. Finally, I show these stylized facts can

be generated by a model with rational inattention, in which information endogenously

becomes more valuable when economic status worsens.

Keywords: Expectation Formation, Bounded Rationality, Information Acquisition,

Non-parametric Method, Recurrent Neural Network, Survey Data

∗I’m grateful to Jesse Perla, Paul Schrimpf, Paul Beaudry, Michael Devereux, and Amartya Lahiri for their

invaluable guidance and support on this project. I thank Vadim Marmer, Fabio Milani, Monika Piazzesi, Henry

Siu, Hassan Afrouzi, and many others for their insightful comments. I’m also thankful to the computational

support of Compute Canada (www.computecanada.ca). All the remaining errors are mine.
†Chenyu Hou: Vancouver School of Economics, University of British Columbia. Email:

sevhou1989@gmail.com

1

www.computecanada.ca
mailto:sevhou1989@gmail.com


1 Introduction

Models of expectation formation have played an important role in modern macroeconomic

theories. The past decade has seen a surge of empirical studies using survey data to examine

how information about aggregate economic status, such as unemployment and inflation rate,

affects households’ macroeconomic expectations. For example, in their seminal work, Coibion

and Gorodnichenko (2012) document pervasive evidence that expectations from the Michi-

gan Survey of Consumers (MSC) deviate from Full Information Rational Expectation (FIRE)

and conclude that households have limited information. However, these empirical frameworks

usually use restrictive assumptions on functional forms to apply parametric methods. As a

result, empirical findings with these approaches are subject to these parametric assumptions

and might miss important features of the relationship between households’ macroeconomic ex-

pectations and signals. For example, when facing information about different macroeconomic

aspects or from various sources, agents may be selective about the information they use to

form expectations. Positive and negative news about economic status may have different im-

pacts in terms of magnitude on their expectations. Furthermore, the way they utilize various

information may differ when the state of the economy changes.1 This paper aims to explore

whether these patterns exist in the data.

To achieve this goal, I first make a methodological contribution by proposing an em-

pirical framework that allows for a flexible relationship between macroeconomic signals and

households’ expectations. I show that most expectation formation models in macroeconomics

adopt a common dynamic structure, where households form expectations about the future by

perceiving some latent variables according to some signals. However, the relations between

signals, latent variables, and expectations take different forms depending on the parametric

assumptions made in the model. For example, in the standard noisy information model, the

latent variable is the posterior mean of that state and has a linear relation with expecta-

tions. In Markov Switching Models, these latent variables become their posterior beliefs on

the Markovian state, and their relation with expectations is governed by Bayes Rule.

The novelty of my empirical method is that I impose no restrictions on what the latent

variables are, how the signals affect the latent variables, and how the latent variables affect

households’ expectations. Meanwhile, proper restrictions are made to maintain the dynamic

structure described above. The relation between signals and expectational variables through

the dynamic structure is estimated using a non-parametric method, Recurrent Neural Net-

works (henceforth RNN). RNN can be used in this specific context because it can universally

approximate the dynamic system that represents the general structure proposed above.2 This

1For example, Coibion and Gorodnichenko (2015) documents that the level of information rigidity falls in

recessions and is particularly high during the Great Moderation. This indicates that the way economic agents

process information may change as economic status changes.
2See Schäfer and Zimmermann (2006) for the universal approximation property of RNN in the context of
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method offers a way to capture the flexible relationship between signal and expectational

variables without making further parametric assumptions on functional forms except for the

common dynamic structure. In particular, suppose the macroeconomic signals affect the ex-

pectations non-linearly, or through interacting with other signals or the latent variables. In

these cases, the relations will be captured by RNN but are usually missed by models that are

linear or with pre-assumed structures. On the other hand, if the underlying mapping between

signals and expectations is linear, this approach will uncover a linear relationship.

The estimated functional form offers important insight on plausible structures for house-

holds’ expectation formation process. It also provides a way to evaluate how macroeconomic

signals affect households’ expectations. Following the functional estimation with RNN, I ap-

ply the Double Machine Learning (DML) method proposed by Chernozhukov et al. (2018)

to estimate the average marginal effect of the macroeconomic signals on households’ expec-

tations. This approach is usually used to correct the bias induced by the plug-in estimators

following machine learning methods. It is also known to deliver valid inferences on these

estimators under high-level assumptions on the corresponding moment condition model and

machine learning estimators, thus allowing for tests on the statistical significance of my em-

pirical findings.

Applying my empirical methods to the Michigan Survey of Consumers, I document three

major findings new to the literature. I first show that households’ expectations of the economic

conditions, namely the unemployment rate and the real GDP growth, are non-linear functions

of signals about the change of unemployment rate and real GDP - the effect of an incremental

change in such a signal depends on the level of the signal itself. The relationship is also

asymmetric - positive and negative signals with the same magnitude have an asymmetric

impact on expectations. In particular, households respond more aggressively to signals that

suggest the economic status worsens.

Furthermore, I find the marginal effects of these signals change over time. The absolute

values for the marginal effects of signals on the economic conditions fall as the GDP growth

slows down or the unemployment rate hikes up. However, the opposite is true for the signals

that contain information about the future. When interpreting marginal effects as weights

that households put on signals, this finding suggests that households shift their attention

from signals about current and past states to those about the future. In other words, the

households behave as ”adaptive learners” when economic conditions are stable and become

more ”forward-looking” when the situation gets worse.

Lastly, the estimated functional form of the expectation formation model suggests such an

attention-shift is mainly driven by the signals on economic conditions rather than information

related to the interest rate or inflation. Furthermore, they contribute to the attention-shift

through both the contemporaneous signals newly observed in each period and the latent vari-

a dynamic system.
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ables that capture the past signals’ impacts. This is consistent with the empirical evidence

on the presence of info rigidity largely documented in the literature on households’ expecta-

tions. Moreover, in my empirical framework, I also include measures on the amount of news

coverage about various macroeconomic aspects from both local and national news media.3 I

refer to such a measure as ”volume of news”. I then find that a higher volume of news about

the economic condition from media leads to a higher weight on signals about the future, as

suggested by Carroll (2003). However, it does not explain the drop of weights on signals about

current and past states. Instead, it is the content of signals on economic conditions, rather

than the volume of news on these signals, that plays the most important role in creating the

attention-shift.

These new stylized facts are consistent with rational inattention models but hard to be rec-

onciled with many other frameworks for modeling beliefs. For example, for a model with Full

Information Rational Expectation to explain the attention-shift between signals on current

and future states, one has to believe that the economic conditions, such as the unemployment

rate, follow a more persistent or volatile process during recession episodes. Standard noisy

information and sticky information models are also insufficient. To create weight changes on

signals in these models, one needs state-dependency in either precision of signals or the under-

lying state-space model that agents believe in, both of which are exogenous in those models.

One possible explanation for the attention-shift is through the volume of news reported by

media as first proposed in Carroll (2003). Lamla and Lein (2014) formalized the idea by show-

ing that greater media coverage increases the precision of signals about the future in agents’

signal-extraction problem, leading to higher weights on these signals. For this explanation to

work, one should observe that the weights on the current signals fall as the volume of news

on economic conditions increases. Moreover, the volume of this news alone should account

for most of the variations in the change of marginal effects. However, neither of these is true

according to my empirical findings.

I then develop a simple model featuring rational inattention to explain these stylized facts.

When agents have limited ability to acquire information, they will choose to allocate their

limited resources optimally on a subset of signals available to them. These choices can change

as economic status changes, thus creating the attention-shift and the non-linear responses to

different signals. Moreover, the state-dependency created by this type of model is not ad

hoc: it comes from agents’ optimal behavior in the face of information constraints. In the

rational inattention model I propose, information about the future becomes more valuable

endogenously when the state of the economy gets worse. For this reason, households start to

seek more information about the future actively and end up placing higher weights on these

signals when forming their expectations.

3I scraped the number of news stories on related macroeconomic topics (i.e. inflation, interest rate and

unemployment rate) from TV news scripts and local newspaper articles in LexisNexis Database. Then I

construct a measure of news coverage on these topics following PFAJFAR and SANTORO (2013).
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Literature Review This paper contributes to several different strands of literature. It first

relates to the growing literature using machine learning techniques to solve macroeconomic

problems. There is a surge in applications of modern machine learning tools in economics for

the past several years, including prediction problems as discussed in Kleinberg et al. (2015)

as well as more recent work on causal inference such as in Athey and Imbens (2016) and

Chernozhukov et al. (2017).4 The empirical method of this paper is closely related to those

in Chernozhukov et al. (2018) and Farrell et al. (2021). The latter offers convergence-speed

conditions for deep Neural Networks to acquire valid inference. The average marginal effect

derived in this paper is a form of the average derivative described in Chernozhukov et al.

(2022). Another paper closely related to this is Bianchi et al. (2022). The authors use Elastic

Net to form benchmark macroeconomic forecasts in a data-rich environment and use them to

assess possible distortions in survey expectation data. My paper focuses on the estimation of

possibly sub-optimal weights on information used by households when forming expectations.

The estimated results are used later to shed light on how to model the expectation formation

process. To the best of my knowledge, this is the first time RNN is applied to learning and

expectation formation problems in an estimation context.

This paper also relates to the growing empirical literature using survey data to investi-

gate how expectations are formed. These studies have documented substantial evidence that

agents’ expectations are formed under a limited information structure (Coibion and Gorod-

nichenko (2012), Andrade and Le Bihan (2013), Lamla and Lein (2014) etc), using various

sources of information (Carroll (2003), Lamla and Lein (2014), D’Acunto et al. (2020) etc).

Whereas this paper focuses on the non-linear, asymmetric, and state-dependent responses of

expectations to macroeconomic signals. Related to this matter, a recent paper Roth et al.

(2020) finds that U.S. households demand an expert forecast about the likelihood of recession

when perceiving higher unemployment risk in a random experiment setting. My paper adds

to this new literature using observational data by showing that various sources of information

compete for households’ attention, and they acquire more information about the future from

experts when the state of the economy gets worse.

The dynamic structure in my empirical framework is built on the literature about learning

and information acquisition. This literature has a long history in macroeconomics. The models

developed in this literature include Constant Gain Learning (e.g. Evans and Honkapohja

(2001), Milani (2007), Eusepi and Preston (2011)),5 Noisy Information (e.g. Woodford (2001)),

Markov Regime Switching (e.g. Hamilton (2016)) and Rational Inattention (e.g. Sims (2003),

Mackowiak and Wiederholt (2009), Maćkowiak et al. (2018)). All these models adopt the

same dynamic structure as in my empirical framework but differ in parametric functional

4For a complete review on recent applications of Machine Learning tools in economics, see Athey (2018).
5The Constant Gain Learning Framework is later extended to models in which experiences affect expec-

tations (Malmendier and Nagel (2015)), and models to explain heterogeneity across agents (Cole and Milani

(2020)).
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form assumptions made when brought to data. The empirical findings are naturally bounded

by these parametric restrictions. The method proposed in this paper is more flexible on these

fronts.

Finally, the two-period rational inattention model developed in this paper is similar to

the partial-equilibrium consumer problem setup in Kamdar (2019), but with only a stochastic

return on capital rather than labor income. In the literature, a standard approach to solve

rational inattention models is by taking a second-order approximation (e.g. Mackowiak and

Wiederholt (2009), Maćkowiak et al. (2018), Afrouzi (2020)) and transform the problem into

a Linear Quadratic Gaussian form.6 However, such an approximation lead to symmetric

and state-invariant choices of signal precision. In this paper, I solve a simple static model

numerically and restrict my setup to Gaussian signals. In this setup, I show that information

about the future return on capital endogenously becomes more valuable in bad states. This

is because the utility loss induced by the difference between optimal saving choice under full

information and that under limited information is larger in those states. This mechanism

is enough to capture both the non-linearity and state dependency in agents’ expectation

formation process.

The rest of this paper is organized as follows: in Section 2 I describe the empirical

framework I propose and the Average Structural Function implied by such framework. In

Section 3 I introduce the method to approximate Average Structural Function using RNN

and how to estimate average marginal effect of signals using the DML method. Section 4

presents the results from applying the method to survey expectation and macroeconomic signal

data. Then I propose the rational inattention model that can explain these news stylized facts

in Section 5. And Section 6 concludes.

2 Generic Learning Framework

In this section, I describe the empirical framework about how expectation is formed by house-

holds, which I refer to as the Generic Learning Framework. It is worth describing the similarity

and key differences between this model to the standard learning models such as stationary

Kalman Filter or Constant Gain Learning. In the standard models, several types of assump-

tions are made: (1) assumptions about information structure faced by agents that are forming

expectations; (2) assumptions on identification, which involves the restrictions on unobserv-

able error terms in the model; and (3) parametric assumptions on learning behavior. These

parametric assumptions include both the underlying structure agents learn about and how

learning is carried out. For example, in standard noisy information models, the perceived law

of motion that the agents learn is assumed to be linear in the hidden states, and the prior

and posterior beliefs on these states are structured as Gaussian. These assumptions lead to

6Exceptions include Sims (2006) and Flynn and Sastry (2022).
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specific parametric regression methods used in different learning models. The Generic Learn-

ing Framework maintains standard assumptions on information structure and identification

but imposes only minimal restrictions on the functional forms of learning. It then naturally

requires the use of non-parametric or semi-parametric methods such as RNN. Such a feature

also implies the Generic Learning Framework can represent a large class of learning models

existing in the literature despite these models may differ in their functional forms.7

I introduce the Generic Learning Framework in two parts. First, I show how the agents

form their expectations after observing a set of signals. This part is typically referred to as

the “agent’s problem”. Then I describe the econometrician’s information set as an observer

and what she can do to learn about the agent’s expectation formation process. This part is

usually referred to as the “econometrician’s problem”.

2.1 Agent’s Problem

Consider the agents observing a set of signals. These signals include both public signals that

are common to each individual and private signals that are individual-specific. Denote the

public signal as Xt ∈ Rd1 with dimension d1 and private signal as Si,t ∈ Rd2 with dimension d2.

An example of the public signal will be official statistics such as CPI inflation or a professional

forecast of CPI inflation. An example of the private signal will be state-level inflation matched

to the location agent lives or the fraction of news stories about inflation published in local

newspapers.

Other than public and private signals, there is an individual level noise term denoted as

εi,t in the agent’s information set. This term represents the observational noise attached to

signals in the standard noisy information model as in Woodford (2001) and Sims (2003). It

can also stand for any unobserved individual-level information that is not captured by public

and private signals but is used by the agent when forming expectations.

After observing the set of signals {Xt, si,t, εi,t}, the agent forms expectation of variables

Yt+1. Denote the corresponding subjective expectation as Yi,t+1|t.
8 The agents’ expectation

formation model then can be written as:

Yi,t+1|t = Ê(Yt+1|Xt, Si,t, εi,t, Xt−1, Si,t−1, εi,t−1...) = G(Xt, Si,t, εi,t, ...) (1)

The formulation in (1) is a very general form of an expectation formation model. The expecta-

tion operator Ê stands for subjective expectations formed by agents, which could be different

from a statistical expectation operator. Without further assumptions, the expectations formed

through this model can be non-stationary and non-tractable. To avoid these properties I make

the following assumption for the Generic Learning Framework:

7In the Online Appendix C.1, I include an example that illustrates how this framework can represent a

stationary Kalman Filter.
8To save notations I drop the step t, however generally speaking this could be h step expectations agents

form, and it can be over any object Y .
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Assumption 1. Agents form expectations through two steps: updating and forecasting. In the

updating step, agents form a finite dimensional latent variable Θi,t, which follows a Stationary

Markov Process:

Θi,t = H(Θi,t−1, Xt, Si,t, εi,t) (2)

In the forecasting step, they use Θi,t to form expectation:

Yi,t+1|t = F (Θi,t) (3)

Where both H(.) and F (.) are measurable functions.

The updating step suggests that the agent holds some beliefs about the economy which

can be summarized with Θi,t. In each period he updates this belief from its previous level

Θi,t−1 with the new signals observed {Xt, Si,t, εi,t}. The Markov property helps to simplify

the time-dependency and guarantees the tractability of the model. Stationarity makes sure

the signals from history further back in time can affect expectational variables today but in a

diminishing way. Furthermore, in this set up, I allow expectations to be affected by signals in

the past without explicitly specifying a fixed length of memory.9

These two steps are commonly seen in standard learning models. For example, in stationary

Kalman Filter, this is usually referred to as the “Filtering Step”, where the agent uses the

new signals to form a ”Now-cast” variable about the current state of the economy. They will

then use this ”Now-cast” to form the expectation about the future using their perceived law

of motion. This step is the same as the ”forecasting step” in the Generic Learning Framework.

It is then worth noting that the structure of my framework described in assumption 1 covers

a large class of learning models existing in the literature, other than the stationary Kalman

Filter. Obviously, this formulation includes adaptive learning models where agents use only

past information to form expectations.10 It also covers models where agents get information

about the future from professional forecasts through reading news stories, as in Carroll (2003).

To further illustrate the flexibility of this generic framework, in Online Appendix C.1 I will

take the stationary Kalman Filter that is typically used in noisy information models and a

Constant Gain Learning model as two examples, and represent them in the form of the Generic

Learning Framework.

In addition to Assumption 1, I also need independence assumptions on the observational

noise term εi,t. This assumption states that the noise unobservable by economists is indepen-

dent of observed public and individual-specific signals as well as across individuals and time.

While such an assumption is commonly made in noisy information and other learning models

9For example, one may want to consider a case where expectation Yi,t+1|t is a function of signals from

a fixed window of time {Xt, Si,t, Xt−1, Si,t−1, ..., Xt−h, Si,t−h} Such a function is also covered by the system

described by (2) and (3)
10See Evans and Honkapohja (2001) for example.

7



with unobserved noise, the economic intuition behind it is simple as well. Consider an agent

wants to predict inflation, and they observe a signal on price change when they went grocery

shopping. Such a signal is an imperfect measure of current inflation as it is a price change

only for one or several products. Mathematically this signal can be thought of as drawn from

a distribution, with the official measure of inflation being the mean of this distribution. An

individual may draw the signal from the left tail or right tail of the distribution, depending

on the specific product she picked up. The public signal Xt (or private signal Si,t) is then the

mean of this distribution, and εi,t measures the deviation of the actual signal agent observes

from this mean. The assumption suggests this deviation is independent of its mean as well as

across individuals and time.

Assumption 2. The idiosyncratic noise on the public signal, εi,t is i.i.d across individual and

time. It is orthogonal to past and future public and private signals:

εi,t ⊥ Xτ εi,t ⊥ Si,τ ∀t ≤ τ

εi,t ⊥ εj,t ∀j 6= i, εi,t ⊥ εi,s ∀t 6= s

The flexible form of expectation formation in (1) together with the two assumptions sum-

marizes the Generic Learning Framework. One can fully recover agents’ expectations if F (.)

and H(.) are known and {Xτ , Si,τ , εi,τ}tτ=0 and Θi,0 are observable.11

2.2 Econometrician’s Problem

Econometricians don’t have all the information endowed by agents. In econometrician’s

problem, εi,t and Θi,t are typically unobservable. Furthermore, econometricians also don’t

have information on the functional form of H(.) and F (.). Denote the observable signals as

Zi,t = {Xt, Si,t}, the econometrician only observes signals {Zi,τ}tτ=0 and households’ expecta-

tions Yi,t+1|t.

The goal of an econometrician is to evaluate the impact of observable signals on the house-

hold’s expectations. In standard learning literature, this is achieved by making structural as-

sumptions on the expectation formation process (for example the functional forms of F (.) and

H(.)) and estimating the average marginal effect of signals or structural parameters through

parametric methods. The findings from this approach are model-specific and prone to model

misspecification. An alternative way to estimate the average marginal effect is by estimating

the Average Structural Function (ASF) without imposing assumptions on the form of F (.) and

H(.). Then one can use the ASF as a nuisance parameter to estimate the average marginal

effect.

11One do not need to observe {Θi,τ}tτ=1 as they can be derived from function H(.), F (.) and history of

signals. In this sense Θi,t can be treated as part of the functional form of H(.) and F (.).
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Average Structural Function The ASF follows from Blundell and Powell (2003). In my

case the dependent variable is household expectation Yi,t+1|t, independent variables are ob-

served signals {Zi,τ}tτ=0 and unobserved error term is εi,t. With strict exogeneity between

independent variables and unobserved errors, ASF is the counterfactual conditional expecta-

tion of dependent variable Yi,t+1|t given the signals {Zi,τ}tτ=0. It is obtained by integrating out

the unobserved i.i.d noise εi,t:

yi,t+1|t ≡ E{εi,τ}tτ=0
[Yi,t+1|t]

=

∫
G(Zi,t, εi,t...)dFε({εi,τ}tτ=0)

=

∫
F (H(Θi,t−1, Zi,t, εi,t))dFε({εi,τ}tτ=0) (4)

Where function Fε(.) is the joint CDF of all the past noise {εi,τ}tτ=0. With the indepen-

dence assumption 2, the ASF is equivalent to counterfactual conditional expectation function

E[Yi,t+1|t|{Zi,τ}tτ=0].

It is immediately worth noting that the ASF can offer insight into the underlying model

G(.), F (.) and H(.) (the expectation formation process employed by agents in this case). For

example, if both updating and forecasting steps follow a linear rule so that F (.) and H(.) are

linear functions. The ASF will be linear in Zi,t as well. On the contrary, if the estimated ASF

is highly non-linear, it suggests non-linearity in the expectation formation process.

As economists, we want to first learn features of agents’ expectation formation model under

the generic formulation, in this case, the structural function G(.). We then want to assess how

signals affect households’ expectations. The ASF can be seen as a summarization of the

structural functions G(.), and a finite-dimensional measure of the ASF is useful to understand

the properties of these structural functions. In particular, the ”average derivative” of ASF

can be an important measure of the marginal effects of input variables. In this paper, I define

such a derivative as the average marginal effect of signals on expectations. The goal now is to

estimate the ASF and the average marginal effect of the Generic Learning Framework.

3 Methodology

The estimation of Average Structural Function in forms of (4) is difficult. Under no further

assumptions on updating and forecasting steps, F (.) and H(.) are unknown and possibly non-

linear. Furthermore, the latent variable Θi,t is not directly observable, so its dimensionality is

unknown.

In standard learning literature, these problems can be solved by parametric assumptions

on structural function. In this paper, I take an alternative approach to directly estimate the

ASF with a nonparametric method – Recurrent Neural Network. Then using the estimated

ASF as a first-stage nuisance parameter, I construct a second-stage DML estimator of the
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average marginal effect following Chernozhukov et al. (2018). I start by introducing the RNN

approach to estimate the Average Structural Function directly.

3.1 Estimate Average Structural Function with RNN

To estimate the ASF (4), I need a method that can capture the mapping from observed signals

{Zi,t} to expectational variables flexibly. Artificial Neural Networks are known for their ability

to approximate any functional forms between input and output variables.12 However, the most

popular Feedforward Neural Networks do not fit the problem well because of their inability

to model time dependency between output variables and past input variables induced by the

dynamic structure described before. To better fit this empirical framework, Recurrent Neural

Networks are used.

RNNs are neural networks designed to model time-dependency between input and output

variables. When a dynamic system describes the mapping between input and output variables,

it is shown by Schäfer and Zimmermann (2006) that RNN can approximate the dynamic

system of any functional form arbitrarily well. This is usually referred to as the Universal

Approximation Theorem for RNN.13 To justify that RNN can approximate the ASF of the

Generic Learning Framework arbitrarily well, I need to show that the ASF (4) takes the

form of a dynamic system considered by this Universal Approximation Theorem. Theorem

1 shows that the ASF can be well-approximated by a dynamic system of equations with a

finite-dimensional θi,t.

Theorem 1. For any dynamic system described in (2) and (3), with assumptions 1 and 2

hold, input vector Zi,t ∈ Rs, where s = d1 + d2, and output vector Yi,t+1|t ∈ Rl. Denote the

average structural function (4) as:

yi,t+1|t ≡ g({Zi,τ}tτ=0, θi,−1) (5)

There exists a finite dimensional θi,t ∈ Rd, a continuous function f : Rd → Rl and a measurable

function h : Rs ×Rd → Rd s.t. the average structural function described in (4) can be written

as a dynamic system:

yi,t+1|t = f(θi,t)

θi,t = h(θi,t−1, Zi,t) (6)

Notice equation (5) is an alternative representation of ASF (4). In (5) the inputs of

function g(.) are the history of observed signals {Zi,τ}tτ=0 and the initial levels of θ at time

12See the Universal Approximation Theorem addressed in Hornik et al. (1989).
13According to the Universal Functional Approximation Theorem (See Hornik et al. (1989) for the results for

Feed Forward Networks and Schäfer and Zimmermann (2006) for Recurrent Networks), a single layer neural

network with sigmoid activation function can approximate any continuous function. The result is extended to

nerual networks with Rectifier Linear (ReLu) activation function by Sonoda and Murata (2015).
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t = 0, θi,−1. The unobserved noise εi,t are integrated out and the information contained in

hidden states Θi,t is captured by the construction of θi,t. The proof of Theorem 1 can be found

in Appendix A. I then use a state-of-art RNN with Rectifier Linear (ReLu) activation function

to approximate the ASF (4) derived from the Generic Learning Framework.14 Now denote the

class of functions in RNN GRNNf◦h , the estimator is computed by minimizing the sample mean

squared errors:

ĝrnn := arg min
gw∈GRNNf◦h

∑
i,t

1

2

(
Yi,t+1|t − gw({Zi,τ}tτ=0, θi,−1)

)2

In Theorem 1 the alternative representation (5) also shows with the same realization of

Zi,t, yi,t+1|t may differ at different point of time. Moreover, such a difference comes from the

accumulation of signals they see, {Zi,τ}tτ=0 rather than the underlying structural functional

forms f(.) and h(.). In other words, such a flexible formulation allows for endogenous time-

varying marginal effect of signals Zi,t. This point will become more clear when I introduce the

average marginal effect.

3.2 Estimate Average Marginal Effect with DML

Now I turn to the other object of interest: the average marginal effect of a particular signal.

This is the mean of gradient for Average Structural Function g({Zi,τ}tτ=0, θi,−1):

β = E[∇g({Zi,τ}tτ=0, θi,−1)] (7)

Or for a single signal zj,i,t which is the j-th element in vector Zi,t, this can be written as:

βj = E[
∂g({Zi,τ}tτ=0, θi,−1)

∂zj,i,t
] (8)

The equation (7) can be thought of as a moment condition used to estimate β. With the

functional estimator obtained from RNN, a plug-in estimator of β is available by computing

the sample mean of the partial derivative using estimator of conditional expectation function:

En[∇ĝrnn({Zi,τ}tτ=0, θi,−1)]. However, such an estimator typically has two problems: (1) when

regularization is used in RNN, which is the case here, the estimate using moment condition

(7) is usually biased; (2) the functional estimates obtained by Machine Learning (RNN in this

case) methods typically have slower than
√
n convergence speed. This makes the estimate not

well-behaved asymptotically, thus making inference hard.15

One way to solve these problems is to use the DML method as proposed by Chernozhukov

et al. (2018) and Chernozhukov et al. (2017). I can form the estimation problem as a

semi-parametric moment condition model with a finite-dimensional parameter of interest,

14The RNN approximate dynamic systems (6) by constructing representations of θi,t as well as f(.) and h(.).
15These issues are well discussed in Chernozhukov et al. (2018), they also propose ways to solve these

problems. One way they proposed is the DML approach, which is what I follow to estimate the average

marginal effect in this paper.
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β; infinite-dimensional nuisance parameter η (including functional estimator from Machine

Learning methods, ĝrnn in this case), and a known moment condition E[ψ(W ; β, η)]. The

benefits of this approach are two folds, it first corrects for biases in the estimator, and it also

offers a way to obtain valid inference on the estimator. The plug-in estimator is usually biased

and not asymptotically normal because the construction of the estimator of β involves the

regularized nuisance parameters obtained by Machine Learning methods (in this case RNN).

This Machine Learning estimator usually has a convergence speed slower than
√
n and makes

the estimator on β exploding as sample size goes to infinity. Using orthogonalized moment

conditions solves this problem because the moment conditions used to identify β are locally

insensitive to the value of the nuisance parameter. This allows me to plug in noisy estimates

of these parameters obtained from RNN.

The estimator β̂ is then
√
n asymptotic normal under appropriate assumptions on estimate

of nuisance parameter η̂ and the moment condition. These conditions typically require the

moment condition to be (Near) Neyman Orthogonal; function ψ(.) to be linearizable and a

fast enough convergence speed of nuisance parameter.16

The convergence speed requirement for Neural Networks with ReLu activation functions

is verified in Farrell et al. (2021). Then following the concentrating-out approach in Cher-

nozhukov et al. (2018), I can derive the Neyman Orthogonal Moment Condition for βj:

E[βj − ∂g({Zi,τ}tτ=0, θi,−1)

∂zj,i,t
+
∂ln(fz({Zi,τ}tτ=0, θi,−1))

∂zj,i,t
(Yi,t+1|t − g({Zi,τ}tτ=0, θi,−1))] = 0 (9)

The nuisance parameters associated with moment condition (9) then include both the av-

erage structural function g(.) as well as the joint density function fz({Zi,τ}tτ=0, θi,−1). One

complication here is the joint density function could be high-dimension, and it includes both

current and past signals. Here I make an extra assumption that the signal Z follows a VAR(1)

so that to get the estimate of the partial derivative of log density, I only need to estimate the

joint density of fz(Zi,t, Zi,t−1). The joint density is then obtained using higher-order multi-

variate Gaussian Kernel Density Estimation with bandwidth chosen according to Silverman

(1986) to guarantee the appropriate convergence speed of the density estimator. The estimator

of βj is obtained by the following steps:

1. Estimate nuisance parameter η = {g, fz}. g is estimated by RNN and fz is estimated by

Gaussian Kernel Density Estimation. Denote the estimates as ĝrnn and f̂z respectively.

2. Obtain estimate of average structural function from computing derivative numerically:

∂ĝrnn
∂zj,i,t

= lim
δ→0

ĝrnn(Zi,t + ∆j/2, {Zi,τ}t−1
τ=0, θi,−1)− ĝrnn(Zi,t −∆j/2, {Zi,τ}t−1

τ=0, θi,−1)

δ
(10)

Where ∆j ∈ Rs is a vector of zeros, with jth element being δ.

16For the formal formulation of semi-parametric moment condition model, derivation of Neyman Orthogo-

nality condtion and convergence speed requirements of nuisance parameter, refer to Appendix B
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3. The estimate of
∂ln(f̂z(Zi,t,Zi,t−1))

∂zj,i,t
is obtained similarly using numerical derivatives.

∂ln(f̂z({Zi,τ}tτ=0, θi,−1))

∂zj,i,t
= lim

δ→0

f̂z(Zi,t + ∆j/2, Zi,t−1)− f̂z(Zi,t −∆j/2, Zi,t−1)

δf̂z(Zi,t, Zi,t−1)
(11)

4. Then the DML estimate is given by:

β̂j =
1

N

∑
i

1

T

∑
t

[
∂ĝrnn({Zi,τ}tτ=0, θi,−1)

∂zj,i,t
− ∂ln(f̂z({Zi,τ}tτ=0, θi,−1))

∂zj,i,t
(Yi,t+1|t − ĝrnn({Zi,τ}tτ=0, θi,−1))]︸ ︷︷ ︸

≡β̂ji,t

(12)

4 Application to Survey Data

In this section, I use survey data of expectation and a rich set of macroeconomic signals

to estimate the Average Structural Function of the Generic Learning Framework. There is

growing literature using survey data to estimate learning models. The respondents in the

surveys that researchers usually differ. The most widely explored expectations are those from

households and professionals. In this paper, I focus on households’ expectations from the US,

and I use professional forecasts (SPF) as a signal that households can utilize to form their

expectations, similar to the idea of Carroll (2003). However, in my empirical method, I allow

households’ expectations to respond to information in SPF in a flexible way.

4.1 Data Description

Table 1 summarizes the data on expectations and signals used to estimate the generic learning

model as well as the notations being used.

For outcome variable Yi,t+1|t I use Reuters/Michigan Survey of Consumers (MSC). It is

a monthly survey for a representative sample of US households with a preliminary interview

usually conducted at the beginning of the month. The survey asks about the respondent’s

one-year-ahead expectations on various macroeconomic aspects. In this paper, I include four

expectational variables of interest: (1) expected inflation rate, denoted as π̂i,t+1|t; (2) whether

the economic condition will be better, denoted as ∆ŷi,t+1|t; (3) whether unemployment rate

will increase, denoted as ∆ût+1|t; (4) whether the interest rate will increase ∆r̂t+1|t.

I include two sets of public signals Xt. One is the realized economic statistics from the

Federal Reserve of St. Louis. These signals contain information about the current state

of the economy. Another set of public signals I consider is the professional forecasts from

the Federal Reserve of Philadelphia. These signals are considered as containing information

about the future because they usually lead and Granger-Cause the predicted macroeconomic

variables.17

17See Carroll (2003) for details
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Table 1: Data Description: some key notations

Input variable (Xt, Si,t) Variable and Notation Source

Macro variable CPI: πt, unemployment: ∆ut, FRED

Federal Funds Rate: rt,

real GDP growth: ∆rgdpt,

Real Oil price: ot

Stock price index: stockt

Professional Forecasts CPI: Ftπt+1, Survey of Professional

unemployment change: Ft∆ut+1, Forecasters

short term Tbill: Ft∆rt+1, (Philadelphia FED)

real GDP growth: Ft∆rgdpt+1

anxious index: Ftrect+j

Individual Signals regional CPI: πi,t, Bureau of Labor Statistics,

regional unemployment: ∆ui,t LexisNexis Uni

news on recession: Nreci,t

news on inflation: Nπi,t

news on boom: Nboomi,t

news on interest rate: Nri,t

inflation rate: π̂i,t|t−1 Michigan Survey of Consumers

Individual Lag change of economic condition: ∆ŷi,t|t−1

Expectation unemployment change: ∆ûi,t|t−1

interest rate change: ∆r̂i,t|t−1

Output variable (Yi,t+1|t) Variable and Notation Source

inflation rate: π̂i,t+1|t Michigan Survey of Consumers

Expectational Variable change of economic condition: ∆ŷi,t+1|t

unemployment change: ∆ûi,t+1|t

interest rate change: ∆r̂t+1|t
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Then in individual-level signals Si,t, I include the local unemployment rate and CPI in-

flation matched with the individual in MSC according to their location information. I also

include the intensity of news story reports on recessions, inflation and interest rates at both

local and national level.18 The idea that information about future flows from professional fore-

casts to households through media reports can be dated back to Carroll (2003) and has lots

of follow-up researches.19 I include the news measure as RNN allows for interaction between

input variables, so the transmission of information can also be captured. I also include the

lagged expectations of households as extra inputs. The assumption that observational noise

is uncorrelated across time guarantees the lagged expectation won’t be correlated with the

unobserved error term εi,t.

Because the panel component of MSC only has two waves for each individual, whereas

capturing the latent state accumulated by observing the history of signals requires a longer

time dimension. For this reason, the data set is compiled as a synthetic panel. Each synthetic

agent is grouped by its social-economic status, including income quantile, region of living,

age, and education level. Because these four characteristics were found significantly affect

expectation by Das et al. (2019). The baseline sample I am using is quarterly from 1988

quarter 1 to 2019 quarter 1. The length of the sample is due to the availability of data on

news stories.20 The frequency of data is quarterly because professional forecasts are quarterly

data.

4.2 Results

Estimation of functions with RNN usually requires selection of network architecture. Because

of the superior performance in applications of modern neural networks, I choose Rectified

Linear (ReLu) Activation functions for all the layers in RNN and use Long-Short Term Memory

(LSTM) recurrent layer. It is worth noting the requirements for convergence speed offered

by Farrell et al. (2021) are also for neural networks with ReLu activation functions, and

the width (number of neurons) and depth in my baseline architecture of RNN satisfy these

requirements. The rest configurations of hyper parameters are chosen using a standard K-Fold

Cross Validation, in my case K = 6.21 Table 2 summarizes the architecture of RNN I use.

18I scraped volume of reports on related macroeconomic topics from TV news scripts and local newspaper

articles. Following PFAJFAR and SANTORO (2013) I construct a measure of news coverage on these topics

by computing the number of news stories on each topic (for example, news about inflation) in each quarter

as a fraction of total news stories in the same quarter, and I include only news with more than 120 words to

exclude short reviews or notice. The data is available from LexisNexis Database.
19See PFAJFAR and SANTORO (2013) and LAMLA and MAAG (2012) for examples.
20Prior to 1988, there are too few local published newspapers included in LexisNexis Database.
21I also tried RNN with smaller width and no regularization (dropout) as well as more complex architectures,

the results don’t change qualitatively. To assess the stability of the neural networks I also tried with multiple

random initial weights and the results are stable across different initial weights used.
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Table 2: Architecture RNN

Tuned Hyper Parameter Configuration

Num. of Recurrent Neurons 32

Feed-forward Neurons 20

Dropout on recurrent layer 0.5

Epochs 200

Learning Rate 1e−6

Depth 2(4)

Un-tuned Hyper Parameter Configuration

Type of Recurrent Layer Long-Short Term Memory (LSTM)

Activation Function: ReLu

* Tuned hyper parameters are picked using 6-Fold cross-validation across

individuals. There is 1 layer of recurrent neurons that are connected to

1 layer of feed-forward neurons. Because each one LSTM layer contains

3 layers of neurons, this makes the actual depth of network being 4.

It is worth noting such depth satisfies the requirement for fast enough

convergence of estimated Average Structural Function so that functional

estimators from this Neural Network can be used to obtain inference on

DML estimators.

It is important to note the estimated ASF has a 4-dimensional output, and more than

20 inputs are considered. The ASF and marginal effects can be presented in each signal-

expectation pair. In this paper, I will only focus on the impact of signals on expectations

regarding the same subjects, which I refer to as ”self-response”. For example, I will look at

the impact of the realized unemployment rate on unemployment expectations for the future.22

The estimation procedure described in Section 3 involves several steps. In this subsection,

I present results progressively following those steps. I first show the estimated ASF from

the baseline RNN described in Table 2. Then I present the time-varying marginal effects of

macroeconomic signals implied by the estimated ASF. I interpret this finding as an ”attention-

shift” of households from signals about the past and current state of the economy to signals

that contain information about the future. Then I obtain the DML estimator of marginal

effects with inference and perform tests to show that such an “attention shift” is statistically

significant. Finally, I explore reasons for the ”attention shift” by doing a decomposition of

the time-varying marginal effects of interest. The identified key driving forces are then used

in the rational inattention model I proposed to rationalize findings from RNN.

22Another interesting direction is to examine ”cross-response”, for example, how signals on inflation affect

unemployment expectation. This direction is explored in a somewhat related work Hou (2020).
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4.2.1 Estimated Average Structural Function

For an easy representation of ASF in (4), denote the signal considered in the input dimension as

xt, and the one-dimensional output is the expectational variable on the same subject, denoted

as Etxi,t+1. Then use Z−xi,t to represent contemporaneous signals other than xt. Following from

(6), the estimated functional estimator can be expressed as the following function:

Etxi,t+1 = ĝx(θi,t−1, Z
−x
i,t , xt) (13)

Now take unemployment as an example subject. Figure 1 plots the average structural

function of expected probability for future unemployment rate increase, along the signal on

change of actual unemployment rate. Following (13), this function can be written as:

Et∆ut+1 = ĝu(θi,t−1, Z
−u
i,t ,∆ut) (14)

Figure 1: Average of expected probability for unemployment rate increase Et∆ut+1 as function of realized

unemployment rate change ∆ut, at different point of time. Purple curve: 2016q4, blue curve: 2016q3, red

curve: 2016q2. The dot on each curve represents the prediction from estimated function when actual data in

that period is input.

In Figure 1, the function (14) is plotted at three different points of time: quarters 2,3,

and 4 in 2016. This graph shows that at different points of time, households may form

different expectations in response to the same signal on the realized unemployment rate change.

However, such a difference comes from either the hidden states (θi,t−1) they accumulated from
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observing a different path of signals or the interactions between newly observed signals Zi,t.
23

In other words, any state dependency I find with the estimated ASF is a result of the signals

households observed. This is a crucial implication of the model that comes from the flexibility

of the Generic Learning Framework and RNN method.

From Figure 1 we see the estimated ASF at different points of time are highly non-linear.

When the unemployment rate falls the curve is flat and expectations of the unemployment rate

respond only mildly. Whereas when unemployment rates increase the curve becomes steeper

and then flat again when the change of unemployment rate is really high. As a result of this

non-linear response, the ASF appears to be asymmetric. Take 2016 quarter four as an example.

The curve implies that if unemployment had increased by 1.6% instead of falling by 0.4% (a

“bad news”), the ASF predicts households will be 5% more likely to believe unemployment

will increase in the future. However, if unemployment decreased further by 2.4% (a “good

news”), households will only be 3% less likely to expect the unemployment rate to go up.24

To assess the significance of the asymmetry from the estimated ASF above, I turn to

estimate average deviations of expectation and obtain valid inference using DML as described

in Appendix B.1.

γδ = E[g(Zi,t + δ, {Zi,τ}t−1
τ=0, θi,−1)− g(Zi,t, {Zi,τ}t−1

τ=0, θi,−1)] (15)

The average deviation is defined in equation (15), it describes the average (across {Zi,τ}tτ=0)

change of expectational variable when signal Zi,t increase by δ, relative to its original level. As

this needs to be done for each output-input pair, I again focus on the pairs in which the output

expectational variable and input signal variable are on the same subject (the “self-response”).

In Figure 2 I plot the average deviation for all four expectational variables along with

the corresponding signals. In each case, I consider 20 different values of δ symmetrically

centered around 0. For each point estimate at δ, I present the 95% confidence interval.

Panel (a) shows the average deviation for unemployment expectation along with the change in

unemployment signal. It shows similar patterns as in the estimated ASF presented in Figure

1: the expectations are more responsive to unemployment rate surge and the responses are

more muted when the unemployment rate falls or becomes too high. The confidence interval

shows the asymmetry is significant.

Comparing all four panels in Figure 2, I find such a non-linearity shows up consistently in

cases of unemployment expectation and economic condition expectation. In panel (b) when ∆y

falls drastically, the slope of ASF becomes flat, the same as the case when the unemployment

23Given that they are close to each other in time (should have similar hidden state accumulated) and current

∆ut is roughly at the same level. The primary reason for the level difference here is that the lag expectation

Et−1∆ut was higher in 2016q2 and q3. The fact that expected unemployment is gradually falling illustrates

how expectation is slowly adjusting downwards when the actual unemployment rate keeps falling(∆ut < 0)

throughout the three quarters plotted.
24Such a pattern will not be seen in a linear model if the underlying expectation formation model is linear

in signals, the ASF will be linear as well.
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signal is high in panel (a). Then it gets steeper as δ becomes closer to 0, and gets flat again

when δ keeps increasing and becomes positive. On the other hand, in panels (c) and (d), which

correspond to inflation and interest rate expectation as functions of inflation and interest rate

signal, the relationships are closer to linear.

These observations lead to two major patterns among all the findings in my application

of RNN to survey data: (1) findings are most stark in cases with expectations on economic

condition (e.g. unemployment change Et∆ui,t+1 and economic condition change Et∆yi,t+1),

and these results are consistent between these two measures. One can think of unemployment

(expectation or signal) as a negative counterpart of economic condition/RGDP. (2) findings

on expected inflation and interest rate are more consistent with those from existing literature.

These patterns also hold for my later findings on time-varying and average marginal effects.

For these reasons, I will focus on presenting results with the expected economic condition,

Et∆yi,t+1, from now on. 25

Figure 2: Average deviation of four expectational variables in response to signals on themselves. Panel

(a): expected likelihood of unemployment increase as unemployment signal change by δ. Panel (b): expected

likelihood of economic condition be better as real GDP signal change by δ. Panel (c): expected inflation rate

as inflation signal change by δ. Panel (d): expected likelihood of interest rate increase as interest rate signal

change by δ.

25For results on the other three expectational variables, I include the results in Online Appendix D.1.
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4.2.2 State-dependent Marginal Effect

Following from the estimated ASF in (13), I can define the average (across individual) time-

specific marginal effect of signal x on expectational variable Ex as:

βExx,t = En[
∂ĝx(θi,t−1, Z

−x
i,t , xt)

∂xt
] (16)

This marginal effect is different at each point of time t for the same reason as discussed before:

different internal state θi,t−1 and contemporaneous signal Zi,t. It describes on average how

responsive the expectation Etxt+1 is to the change of signal xt at time t after observing all

signals up to that time. It can then be interpreted as weights applied to signals following

the standard learning literature. In the rest of this paper, I will use weights and marginal

effects interchangeably. If the underlying learning model doesn’t feature endogenous states or

interactions between signals and states, for example, stationary Kalman Filter, this marginal

effect will not have a time-varying slope.26 In this section, I show profound time-variation in the

average marginal effect of signals on expectations about the economic condition. Specifically,

such a time variation implies households’ attention to signals is cyclical: they put lower weights

on signals about current and past states and, at the same time, more weight on signals about

the future during periods with bad economic conditions.

Before I proceed to these results, it is useful to define two related notions: (1) signal about

the past and signal about the future; (2) bad times and ordinary times.

Signals about past v.s. future: Agents can acquire information about the current state

of the economy from macroeconomic statistics. They get this information either directly as it

is publicly available or partially through daily activities. I will use realized key macroeconomic

variables as a proxy for the signal about the past. Expectations formed majorly relying on

this information are then treated as adaptive. For signals about the future, I follow Carroll

(2003) and use consensus (average) expectation from the Survey of Professional Forecasters

as a proxy. Information about the future can take the form of news or anticipated shocks as

in Beaudry and Portier (2006) and Barsky and Sims (2012), and it flows into the household’s

information set through news media as suggested in Carroll (2003).

Bad time v.s. ordinary time: For periods characterized as “bad time”, I take the ones

that have at least 2 consecutive quarters with the unemployment rate increasing: 1990q3-

1992q3, 2001q1-2002q4 and 2007q3-2010q3.27 The results will not change qualitatively if I use

26It is closely related to the curvature of estimated ASF presented in the previous section but not related

to the level difference. For example, in the stationary Kalman Filter, its ASF recovered by RNN may still be

different in levels at each point of time.
27Notice the unemployment rate change I use, ∆ut is year-to-year unemployment rate change. I pick the

quarters that have ∆ut > 0 with 2 consecutive quarters around it also have ∆ut > 0. This choice is because I
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the NBER recession dates to measure ”bad time”.28

I then present the time-specific marginal effect from (16) of signals on real GDP growth.

I consider both signals about the past and future. In Figure 3, the color bars in the top panel

are the marginal effects of real GDP growth signal, xt = ∆yt, on expected economic condition

next year; those in the bottom panel are the marginal effects of professionals’ forecasts about

real GDP growth next year, xt = Ft∆yt+1, on expected economic condition. Both marginal

effects are normalized by standard deviations for ease of comparison.

The color bars in each panel stand for the corresponding marginal effect at that point in

time. A red color means a positive marginal effect; a blue color means a negative marginal

effect, and white means the marginal effect is zero. The color map is on the right side of each

panel, and the scale stands for normalized marginal effect. For example, 0.1 on the color map

means when signal xt changes by 1 standard deviation, the corresponding expectation changes

by 0.1 standard deviations. This is then represented by a dark red color bar in the graph.

The darker the color, the bigger the magnitude of the marginal effect. The solid black line is

the series of signal xt at which I evaluate the marginal effect. The dotted area is the NBER

recession episode.

In general, both higher real GDP growth and higher forecasted growth by professionals

make households predict better economic conditions. The maximum of marginal effect of

real GDP growth is 0.24 in 1996 quarter 1, which indicates 1 standard deviation increase

of real GDP growth (approximately 1.66%) leads to a 0.24 standard deviation increase in

expected business condition (on average 0.125 more likely to believe the economic condition

to be better).

One key observation comes from comparing the top panel to the bottom. In panel (a),

the pale color during recession periods in panel (a) suggests that the marginal effect of the

past signal is close to zero or negative. In contrast, the red color bars indicate the marginal

effects are usually sizeable during non-recession episodes. On the other hand, in panel (b),

the patterns for marginal effects on the future signals are the opposite: higher during the

recession period than in ordinary periods. Such an observation indicates that households are

more sensitive to signals about the past during ordinary periods and put more weight on signals

about the future when the economic condition gets worse. It is also important to note that

it does not necessarily mean they are more pessimistic during bad times because negative or

close-to-zero marginal effects do not mean worse expectations of economic conditions, rather

use a year-to-year change in unemployment rate as the measure of unemployment rate signal, and this measure

appears to return to zero 2 to 4 quarters after the day that marks the end of NBER recessions. Using such a

characterization shows weights on signal change are related to the signal itself rather than an external definition

of “bad period” as it is reasonable to think that households won’t have the information on the end date of

NBER recessions when they form expectations around the same time. The announcement typically comes out

at least 2 quarters after the official end day of the NBER recession.
28These results using NBER recession dates as robustness check is included in Online Appendix D.2.
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Figure 3: Color bars in panel (a): the marginal effects of real GDP growth signal ∆yt on expected economic

condition next year E∆yt+1|t. Panel (b): the marginal effects of professionals’ forecasts about real GDP

growth next year F∆yt+1|t on expected economic condition. Red color: positive marginal effect; blue color:

negative marginal effect. Black solid line: data on the signal considered.

it means the expectation is less responsive to the signal considered.

Such a finding is obviously at odds with models that impose time and state invariant

weights on different signals, such as constant gain learning and model with stationary Kalman

Filters. It is more consistent with the case that agents shift their attention to signals about

the future thus becoming more ”forward-looking” during bad times in the economy. Moreover,

such a finding does not only exist in expectation and signals on economic condition ∆y, but

it also qualitatively holds for expectation and signals on unemployment status ∆u. In the

next section, I follow Chernozhukov et al. (2018) and obtain the DML Estimator on average
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marginal effects (AME) in bad and ordinary times. The DML method helps to correct the

potential biases and allows me to assess whether the AMEs are different in bad and ordinary

times.

4.2.3 DML Estimator of Average Marginal Effects

I compute the DML Estimator following the procedures described in Section 3.2. Table 3

reports the estimated AME of past and future signals on expected economic conditions and

expected unemployment rate change. I separate the time-varying marginal effects into two

groups, βrec denotes the average marginal effect during ”bad periods” defined before. And βord

denotes the average marginal effect in periods other than the bad episodes. I then perform a

Wald test on βrec = βord, the p-value is also reported in the table.

Table 3: Average Marginal Effect of Past and Future Signals on Expectation

Expectation: E∆yt+1|t E∆ut+1|t

Signal βbad βord βbad = βord βbad βord βrec = βord

(std) (std) (p-val) (std) (std) (p-val)

Ft∆ut+1 −0.037∗∗∗−0.037∗∗∗−0.037∗∗∗ 0.009∗∗ < 0.01 0.029∗∗∗0.029∗∗∗0.029∗∗∗ 0.007∗∗∗ < 0.01

(0.004) (0.002) (0.003) (0.002)

Ft∆yt+1 0.049∗∗∗0.049∗∗∗0.049∗∗∗ 0.016∗∗∗ < 0.01 −0.022∗∗∗−0.022∗∗∗−0.022∗∗∗ −0.009∗∗∗ < 0.01

Future Signal (0.005) (0.003) (0.002) (0.001)

Ft∆rt+1 0.026∗∗∗ 0.025∗∗∗ 0.92 −0.022∗∗∗ −0.021∗∗∗ 0.79

(0.007) (0.004) (0.004) (0.002)

Ftπt+1 0.014∗∗∗ 0.003∗∗ < 0.01 −0.008∗∗∗ 0.000 < 0.01

(0.002) (0.001) (0.002) (0.001)

∆ut −0.006 −0.021∗∗∗−0.021∗∗∗−0.021∗∗∗ 0.04 0.005 0.012∗∗∗0.012∗∗∗0.012∗∗∗ 0.08

(0.006) (0.004) (0.004) (0.002)

∆yt 0.004∗ 0.017∗∗∗0.017∗∗∗0.017∗∗∗ < 0.01 −0.006∗∗∗ −0.01∗∗∗−0.01∗∗∗−0.01∗∗∗ 0.04

Past Signal (0.003) (0.001) (0.001) (0.002)

∆rt 0.002 0.003∗∗∗ 0.80 0.004∗ 0.004∗∗ 0.99

(0.002) (0.001) (0.002) (0.001)

πt −0.007∗∗∗ −0.008∗∗∗ 0.67 −0.000 0.001 0.40

(0.003) (0.002) (0.001) (0.001)

* ***,**,*: Significance at 1%,5% and 10% level. βbad is average marginal effect in bad periods defined before,

βord is average marginal effect in ordinary period. βbad = βord is test on equality between average marginal

effects, its p-value is reported for each expectation-signal pair. Bold estimates denote the marginal effect with

significantly bigger magnitude. Standard errors are adjusted for heteroskesticity and clustered within time.
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The key message from Table 3 can be seen by comparing the marginal effects of the same

signal between bad and ordinary periods. For future signals on unemployment and real GDP

growth, their marginal effects always have a bigger magnitude during bad episodes, whereas

the effects of past signals are always bigger in ordinary episodes. The p-values on the Wald test

with the null hypothesis: H0 : βbad = βord range from 0.08 to less than 0.01 for these signals,

which suggests the difference of marginal effects is statistically significant at least at 10% level.

However, the same pattern does not hold true for signals on inflation and interest rate, with

the exception of the future signal on inflation. In fact, average marginal effects on these signals

are either insignificant or with small magnitudes. These results show that the attention shift

documented before is statistically significant and it only exists for expectations and signals

on real economic activities. In other words, they are more adaptive learners when economic

conditions are stable and become more forward-looking when the situation gets worse.

4.2.4 Decomposing Time-varying Marginal Effect

Now I have shown that households put more weight on signals from professional forecasters

in bad times; meanwhile, they rely less on realized macroeconomic statistics. However, the

explanation for such a weight shift remains unclear. As the time variation is only created

by inputs to the RNN, I can use the trained ASF to decompose the contributions coming

from different sets of input signals. I separate input signals for RNN into four categories:

signals about economic conditions, signals about inflation, signals about the interest rate, and

measures of news exposure about economic conditions.

As estimated ASF is non-linear, a proper way for variance decomposition is to use the

Law of Total Variance following Isakin and Ngo (2020). I compute the direct contribution

to the time-varying marginal effects of past and future signals on expectations related to

economic conditions (those regarding ∆u and ∆y) for each of the four sets of signals described

before. It’s important to note that this variance decomposition does not represent the relative

importance of specific signals in forming expectations. Rather it should be interpreted as the

relative importance of these signals to explain the time variation of marginal effects.

Table 4 shows the variance decomposition for time-varying marginal effects of two signals on

expected economic conditions as presented in Section 4.2.2.29 The top panel is for past/current

signal on real GDP growth, denoted as βEyy,t and the bottom panel is for the future signal on

real GDP growth (from SPF), denoted as βEyFy,t. In both marginal effects, signals on economic

conditions contribute the most to the time-variation observed. They explain up to 57% of the

variation for the marginal effect of the past signal and 52% for that of the future signal. News

exposure to economic conditions also plays an important role, especially for the marginal effect

of future signals. With signals and news exposure on economic conditions alone, I can explain

as much as 72% and 80% of the total time-variation for the marginal effects of past and future

29For same decomposition exercise of unemployment expectations refer to Online Appendix D.4
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signals.

Table 4: Variance Decomposition of Time-varying Marginal Effects: E∆y

Marginal Effect of Past Signal: βEyy,t

Signal Type: Economic Condition Inflation Interest rate News Total

State θi,t−1 17% 8% 3% 12% 40%

Channel: Covariate Zi,t 40%40%40% 12% 5% 3% 60%

Total 57% 20% 8% 15%

Marginal Effect of Future Signal: βEyFy,t

Signal Type: Economic Condition Inflation Interest rate News Total

State θi,t−1 13% 2% 5% 9% 29%

Channel: Covariate Zi,t 39%39%39% 7% 6% 19% 71%

Total 52% 9% 11% 28%

On the other hand, inflation and interest rate signals account for only little of the time-

variation, except for inflation signals in explaining marginal effects of past signal βEyy,t . This

is due to the signal on real oil price included as signals on inflation. Researchers document

that oil price affects consumer expectations not only on inflation but also general economic

conditions,30 it is possible that oil prices either interact with or competing the attention

put on signals about economic conditions and thus affecting the sensitivity of the household’s

expectation to these signals. Excluding oil price cuts down the marginal effect of ∆y explained

by inflation signals from 20% to 12%.

Another important question is for the same set of signals considered whether the time-

variation of marginal effect is coming from contemporaneous signals Zi,t or through the ac-

cumulation of past signals which is represented by state θi,t−1. I then separately evaluate

the variation explained by these two channels. In Table 4 for each set of signals, I also doc-

ument the variance explained by each channel separately. For economic condition signals,

new information at each period plays the most important role, which is around 70% of the

total variation explained by these signals. Meanwhile, the state also accounts for a significant

share of the time-variation. It explains 17% and 13% respectively for the marginal effects of

past and future signals. This means the weight households put on economic condition signals

depends on not only their current level but also the state they accumulated from observing

these signals in the past.

30See Edelstein and Kilian (2009), for example.
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Variance decomposition shows that the most important signals for explaining time variation

are those about economic conditions. But it does not offer information about how exactly these

signals change marginal effects over time. It is possible that despite these signals being most

important, they do not create the weight increase for future signals and decrease for past

signals during bad times. To complete the picture, I present the time-varying marginal effects

with only signals on economic conditions in Figure 4 and compare it with the actual marginal

effects.

Figure 4: Time-varying marginal effect of past and future signal on real GDP growth. Top panel: marginal

effect of future signal, βEyFy,t; bottom panel: marginal effect of future signal, βEyy,t . The red curve: marginal

effect created by estimated ASF with all signals. The blue curve: marginal effect created by ASF with only

economic condition signals.

In Figure 4, the red curves are the baseline time-varying marginal effects from estimated

ASF with all signals as input. The blue curves are marginal effects computed from ASF

using only actual economic condition signals as input, which are the same series I use to

perform variance decomposition in Table 4.31 This figure shows strong evidence that economic

condition signals generate the weight increase on future signals as well as a drop of weight

on past signals during bad times. They are indeed key driving forces for the attention shift I

documented before.

One other possible explanation for the time-variation of marginal effect was addressed

by Carroll (2003), in which the author shows how information on inflation transmits from

31For signals other than economic conditions I use random draw from the empirical distribution of these

signals.
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professional forecasts to households through news media. Intuitively, when there are more

news stories on economic conditions, it is easier for households to acquire information about

the future, thus putting higher weights on those signals.32 In the Online Appendix we include

the same exercise as in Figure 4 but use either inflation and interest rate signals, or news

exposures for robustness checks. Neither of these two types of information creates the attention

shift pattern.

5 Model with Rational Inattention

In this section, I develop a simple two-period rational inattention model to illustrate how

costly information acquisition alone can give rise to non-linear and state-dependent expectation

formation as I documented in data. Comparing to a standard rational inattention model, as

presented in Sims (2003) and Maćkowiak et al. (2018), several modifications are made to the

model.

First, I allow agents to acquire information about both the current and future state of the

economy, and there are two separate signals associated with this information. Such a modi-

fication is needed to address the attention-shift toward future signals. Secondly, rather than

taking a linear-quadratic approximation of the agent’s problem and looking for an analytical

solution, I solve the problem numerically to keep the non-linear nature of the agent’s optimal

choices. This modification makes the value of information differs across states of the economy,

which is the key mechanism to explaining the stylized facts documented in this paper.

5.1 Household’s Problem

There is a representative household that faces an individual consumption-saving problem. The

household lives for two periods and gets deterministic endowments {et, et+1}. The household

can only save with a risky asset that pays a random return dt+1 at time t + 1. The only

uncertainty comes from dt+1. I then interpret dt+1 as the fundamental economic condition in

the future, as it accounts for all the uncertainty about the agent’s future income.33

Before the agent chooses consumption and saving in the first period, he can obtain signals

that help him to forecast dt+1. After observing these signals, the agent forms a belief on

the return of the risky asset and chooses consumption and saving according to this belief. In

rational inattention models, the accuracy of signals is determined by the information structure.

The agents can choose the information structure with a cost. Signals with high accuracy will

have high costs. For now, I will denote the information structure chosen optimally by the

agent as It.
32See LAMLA and MAAG (2012) for example.
33If one considers saving as capital investment, with full depreciation dt+1 can be thought of as productivity

shocks in the standard AK model.
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The household’s utility maximization problem then can be written as:

max
ct,st+1

E[u(ct) + βu(ct+1)|It] (17)

s.t. ct + st+1 = et

ct+1 = (1 + dt+1)st+1 + et+1

For ease of notation, define rt+1 = 1 + dt+1 the above problem becomes:

max
st+1

E[u(et − st+1) + βu(rt+1st+1 + et+1)|It] (18)

5.2 Information Structure

For agents to make a forecast on dt+1, I need to specify a law of motion for the stochastic

return. Consider the return evolves according to an AR(1) process described in (19).

dt+1 = ρdt + ψt+1 (19)

To reflect the fact that there is information available to agents about the future of the

fundamental, I assume the shock on return tomorrow has a predictable part ηt and an unpre-

dictable part ε1,t+1. The predictable part itself follows a stationary AR(1) process.

ψt+1 = ηt + ε1,t+1 (20)

ηt = ρηηt−1 + ε2,t (21)

Both ε1,t+1 and ε2,t are i.i.d and mean-zero shocks that follow normal distribution.34 Denote

εεεt ≡

[
ε1,t

ε2,t

]
∼ N(000,QQQ), QQQ ≡

[
σ2

1,ε 0

0 σ2
2,ε

]
, XXX t ≡

[
dt

ηt

]
, and A ≡

[
ρ 1

0 ρη

]
. I can write the state-

space representation:

XXX t+1 = AXXX t + εεεt+1 (22)

Signals: Because the model being analyzed here is not a Linear-Quadratic problem, the

famous result that the optimal information set is Gaussian is not available. For simplicity,

I restrict the signals considered here to be linear Gaussian. A convenient result of such

restriction is that the choice of information set can be described by the precision (inverse of

variances) of signals.

Before choosing the optimal information set with a cost, the household is also passively

exposed to a signal on the current state dt. This is summarized as a Gaussian noisy signal

34Such a formulation is similar to Barsky and Sims (2012), and the predictable part can be interpreted as

“news shocks” described in Beaudry and Portier (2014). In general, this information may come from the stock

market, news, or professionals. In this model, for simplicity I consider that this information is contained in

the professional forecast. Throughout the model, I will assume the agent knows the correct law of motion of

the stochastic return.
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z0 = dt + ξ0, where ξ0 ∼ N(0, σ2
z). Such a signal can be thought of as an information agent

that picks up passively during daily life. The household’s initial information set contains both

her prior, XXX0, and the passive signal z0. It can be fully summarized with updated prior:

I0 = {XXX t|0}, with XXX t|0 stands for prior about XXX t conditional on signal z0.

Upon observing passive signals, agents also deliberately choose signals costly to be better

informed. To be consistent with my empirical setup, I restrict the choices of signals to one

about the current state dt and one about the future that comes from SPF:

Ftdt+1 = ρdt + ηt (23)

Agents observe unbiased signals on these two objects, with additive normal noise ξξξt, where:

ξξξt ≡

[
ξ1,t

ξ2,t

]
, ξξξt ∼ N(000, R), R ≡

[
σ2

1,ξ 0

0 σ2
2,ξ

]

Denote the vector of signals as ZZZt, the signal structure is given by:[
zspft

zt

]
≡ ZZZt = GXXX t + ξξξt (24)

Where G is given by G =

[
ρ 1

0 1

]
. The information set after the agent chooses the precision

of signals can be defined as It = I0 ∪ {ZZZt}.

Information Cost: Information comes with a cost. Following Sims (2003) I measure the

cost of acquiring more information in set It with the difference of the Shannon entropy, denoted

as H(.). As both random states and signals I considered are normally distributed, results from

Maćkowiak et al. (2018) show that the entropy cost can be represented by posterior variance-

covariance matrices. Denoted as κ, equation (25) formally defines the entropy cost.

κ = H(XXX t+1|I0)−H(XXX t+1|It) =
1

2
log2(

detΣt+1|0

detΣt+1|t
) (25)

Where Σt+1|0 stands for posterior variance matrix for hidden states XXX t+1 conditional on in-

formation in I0 and Σt+1|t stands for posterior variance matrix conditional on information in

It.35

5.3 Optimal Signals

Agent’s problem comes in two steps. First, the agent chooses information set It. He cannot

control the realization of signal ZZZt but he can choose the precision of noise ξξξt that is attached

35For derivations of entropy cost in (25) and the posterior variance-covariance matrices Σt+1|0 and Σt+1|t,

please refer to the Online Appendix E.4.
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to this signal. In this sense choosing information set It is equivalent to choosing variances of

signal {σ2
1,ξ, σ

2
2,ξ}. Then agent solves consumption-saving problem given the information set

chosen and signals ZZZt realized. This problem can be summarized as follows:

max
σ2
1,ξ,σ

2
2,ξ

E[u(et − s∗t+1) + βu(rt+1s
∗
t+1 + et+1)|I0]− λκ (26)

s.t. s∗t+1 = argmaxst+1 E[u(et − st+1) + βu(rt+1st+1 + et+1)|It] (27)

κ =
1

2
log2(

detΣt+1|0

detΣt+1|t
) (28)

The information cost in terms of utility loss is assumed to be a marginal cost parameter λ

times the Shannon entropy cost κ. The parameter λ describes how costly it is for the agent

to acquire information with some level of entropy reduction. When λ is bigger, it means the

agent suffers higher utility loss from acquiring more information. In particular, when λ = 0,

the information cost becomes irrelevant and the agent forms expectation according to FIRE.

For simplicity, assume quadratic utility function u(ct) = ct − bc2
t .

36 The optimal saving

conditional on information set from (27) is:

s∗t+1(It) =
−1 + 2bet + (β − 2bβet+1)E[rt+1|It]

2b(1 + βE[r2
t+1|It])

(29)

Precisions of signals matter for the agent as they affect her optimal saving through E[rt+1|It]
and E[r2

t+1|It].37 Recall rt+1 = 1 + dt+1, we have:(
E[dt+1|It]
E[ηt+1|It]

)
= A

(
(I −KG)X̂̂X̂X t|0 +KZtZtZt

)
= A

(
(I −KG)

(
(I −K0G0)X̂XX0 +K0z0

)
+KZtZtZt

)
(30)

Where K is the Kalman Gain from signal ZZZt, G0 = ι = [1 0], and K0 the Kalman Gain

from initial passive signal z0. The expected second order term in the optimal saving function

is then given by:

Et[r2
t+1|It] = ιΣt+1|tι

′ +
(
1 + E[dt+1|It]

)2
(31)

From (30) and (31), the variances of signals, σ2
1,ξ and σ2

2,ξ, affect the saving policy directly

through the Kalman Filtering process and indirectly from random variable ZZZt. In general,

a higher precision (or lower variance on the noise) leads to higher expected utility. More

importantly, because the optimal saving choice is non-linear in the state, the ex ante expected

36Note that despite the utility function being quadratic, the problem doesn’t boil down to an LQG as the

policy function under full information is not linear in the state.
37For full derivation of E[rt+1|It] and E[r2t+1|It], please refer to the Online Appendix E.5

30



utility in (26) depends not only on the variance of states conditional on I0 but also the mean

of the states. This makes the expected benefit of information state-dependent.38

Finally, the information cost in (28) is also affected by signal precisions because the pos-

terior variance-covariance matrix Σt+1|t is given by:

Σt+1|t = AΣt|0A
′ − AKGΣt|0A

′ +QQQ

= AΣt|0A
′ − AΣt|0G

′(GΣt|0G
′ +R)−1GΣt|0A

′ +QQQ (32)

The trade-off agent faces in solving this problem are then between the benefit of more

information and its cost. Lower σ2,ξ and σ1,ξ (thus higher precision on both signals of the

current state and Professional Forecasts) will increase expected utility. Meanwhile, more

accurate signals will also increase information cost κ, as accurate signals decrease the posterior

variance of the agent’s belief. Because the agent observes an initial signal z0 which contains

information about dt, her optimal choice of signal precision will depend on dt:
39 when dt is

negative, information becomes more valuable to the agent thus they are willing to choose

higher precision for signals.

5.4 Results

Table 5: Model Parameters

Parameter Value Parameter Value

et 10 et+1 5

b 1/40 β 0.95

ρ 0.2 ρη 0.9

σ1,ε 0.09 σ2,ε 0.09

σz 0.18 λ 0.042

X̂XX0 000

I solve the rational inattention problem (26)-(28) numerically using the parametrization

included in Table 5. The main purpose of this section is to show that non-linear functional

form and state-dependency weights can be generated with the proposed model with rational

inattention.

38When the optimal saving is linear in states, the problem is a standard LQG problem where the expected

benefit of information boils down to a form that only involves posterior variances and does not depend on the

state. For a nice illustration please see the Online Appendix.
39If one assumes no passive signal is observed by agents, then the optimal choice of signal precision does not

depend on dt, but it will still depend on the prior belief about fundamentals. If this is the case, one should

observe hidden states capturing most of the variation in time-varying marginal effects in Section 4.2.4. However,

instead most variation is explained by the current signal, thus the empirical results are more consistent with

the case when the agent observes a passive signal on current state dt.
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For direct comparison with my empirical finding, I first show counterfactual of expectation

on dt+1 as a function of change to dt, holding other signals at constant. I present it together

with the agent’s optimal choices of signal variances as well as the model implied weights on

current (dt) and future (SPF) signals. Recall the weights are computed directly from (30)

using Kalman Filter. They are functions of model parameters as well as the endogenously

chosen signals precisions. Specifically, the higher the precision on a signal, the higher the

weight will be.40 These results are included in Figure 5.

Figure 5: Results from Rational Inattention Model

Top left panel: expected state of economy Edt+1 as function of current state dt. Top right panel: red line is

weight on past/current signal dt, blue line is weight on future signal SPF. Bottom right panel: chosen standard

deviation of noise attached to the corresponding signal. Red line is for signal on dt, blue line is for signal on

SPF. Bottom right panel: Implied expected unemployment as function of current unemployment. This is done

by considering the unemployment state as the opposite of dt. It is used to directly compare with Figure 2

Top left panel of Figure 5 can be seen as model implied Average Structural Function of

agent’s expectation formation process. It describes how expected future state Etdt+1 changes

along the change of current state dt. When realized dt is high and positive, the slope of

this function is quite flat. This is because agent believes it is more likely the state in future

will be good, which indicates the return on risky asset is high in expectation. With this

prior, more information is not valuable enough for agents thus they are not acquiring accurate

signals on either current state dt or SPF. This can be seen from bottom left panel: under this

parametrization, any signal with noise variance higher than 1 implies almost 0 weight on this

signal. When current state is good (dt > 0.2) agent chooses variance on both signals to be

40I include the analytical derivation of the weights in the Online Appendix E.1.
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higher than 10. The weight agent put on signal is depicted in top right panel. The reason why

weight on dt is not 0 is because of the initial signal on dt that agent gets, before he chooses

extra signals in the rational inattention model. This suggests when economic condition is

good, agent will be happy to just form fuzzy expectation about future through the initial

signal he gets, rather than actively searching for more information.

As the economic condition starts to get worse, in the area where −0.2 < dt < 0.2, the slope

of ASF gets most steep. This reflects the increasing weight agent puts on current signal about

dt. As agent realizes economic condition today is getting worse and worse (through observing

the initial signal on dt), information becomes more and more valuable and he is willing to

pay higher cost to acquire more precise signals. This can be seen from bottom left graph that

standard error on extra signals that agent chooses starts to fall sharply (which means precision

of signal increases drastically) when current condition becomes worse. One interesting aspect

is that they always get more accurate signal on dt first before they go for SPF signal. This

is because the information cost is increasing as agent’s posterior getting more accurate. SPF

signal contains more accurate information about future state thus is more costly for agents to

get.

Finally when current economic condition is bad enough, when dt < −0.2, agent gets more

accurate signals on SPF. And because SPF has higher information content agent will start to

put higher weights on signal about future (SPF) and lower weights on signal about current

state dt. Such a structure then created the non-linear ASF as I observed from survey data.

Furthermore, it also generates the asymmetric response to good and bad states: as for positive

realization of state dt, agent has less incentive to acquire more information on it and end up

attaching lower weights to the signal. This results in a lower mean expectation on dt+1. On

the other hand, when realization of dt is bad, agent actively search for more information and

put higher weights on these signals thus his expectation responds to bad states more than

good ones.

The right bottom panel is then the ASF for implied unemployment expectation from the

model. I consider −dt as a proxy for unemployment status because dt can be interpreted as

output growth and it is in general negatively correlated with unemployment. By doing this I

can create the ASF for unemployment rate, which has the same dynamic as the one I found

with RNN.

The time-variation of weights on signals is then reflected in top right panel of Figure 5:

the weight on future signal (SPF) starts to increase when economic condition gets worse,

meanwhile weight on past signals falls. To better illustrate this property of the model, I

simulate the time series of dt according to equations (19)-(21) for 200 periods.41 Similar to

the empirical part, I define episodes where dt is 2 standard deviations lower than its mean as

41The bad periods account for 12 out of 200 periods of simulate dt, which is similar to the recession periods

as a fraction of post 1980 episode.
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“bad periods”. I then compute the average weight agent puts on past signal dt and future

signal Ftdt+1, together with the optimal standard deviation of noise on each signal. Table 6

summarizes these statistics.

Table 6: Model Implied Weights and Precision during Bad and Ordinary Periods

Bad Times Ordinary Times

Signal on: Weights Std. of noise Weights Std. of noise

Past/Current signal dt 0.35 7e-4 0.57 0.94

Future signal Ftdt+1 0.55 0.10 0.04 3.13

* Bad time is defined as periods in which dt is 2 standard deviation lower from its

long-run mean, 0. The rest episodes are considered as ordinary time. Weights are

average model-implied weight on corresponding signal, during bad or ordinary

time. Std. of noise is average model-implied standard deviation of noise on

corresponding signal, during bad or ordinary time.

It is obvious in Table 6 that the model implies in the ordinary period, the agent will on

average put higher weight on signals about past and current states when compared to bad

times. The average weight on dt is 0.57, almost twice as high as that when the economic

condition is bad. Furthermore, the agent puts much higher weight on signals about the future

during bad times, whereas almost no weight at all during ordinary times. The standard

deviation of noise chosen by a rational inattentive agents then suggests such attention shift is

induced by them optimally choosing much more accurate signals during bad times, whereas

they choose to stay less informed during ordinary periods.

Finally, I want to point out that different values of information cost λ, prior mean and vari-

ances will also affect the state-dependency of information choices. I include these comparative

statistic analyses in the Online Appendix.

6 Conclusion

How do households form expectations using a rich set of macroeconomic signals? This paper

explores the answer to this question by proposing an innovative Generic Learning Framework

that is flexible in functional forms and time-dependency that describe the relationship between

signals and expectational variables. The unknown function form of the agents’ expectation

formation model is estimated with a Recurrent Neural Network. This method can recover any

function forms considered by the Generic Learning Framework, including those most commonly

34



used in the learning literature. After the functional estimation, I also obtain estimators on

the average marginal effects of signals with valid inferences following the Double Machine

Learning approach developed by Chernozhukov et al. (2018) .

Applying this method to survey data for US households, I document three stylized facts

that are new to the literature: (1) agents’ expectations about future economic conditions is

a non-linear and asymmetric function of signals on real activities of the economy. (2) The

attention to past and future signals in the Generic Learning Model is highly state-dependent.

The agents behave like adaptive learners in ordinary periods and become forward-looking as

the state of the economy gets worse. (3) Among all the signals considered in the empirical

setup, signals on economic conditions play the most important role in creating the attention-

shift. These findings are at odds with many models widely used in the literature, such as noisy

information models and constant gain learning models.

Finally, a rational inattention model is developed to match these news stylized facts and

help illustrate the impact of attention-shift on agents’ expectation formation process. The

model highlights that the agent’s optimal choice of signal precision is a decreasing function

of the current state of the economy due to non-linearity in their optimal saving choices. This

information friction leads to the agent allocating more efforts to get information about the

future when the economic condition deteriorates today. Such behavior makes them put higher

weight on signals about the future and lower weight on information about current and past

states. This information friction then is enough to generate both non-linear, asymmetric

expectation and state-dependent weights on signals documented in the empirical findings.
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Appendices

A Proof and Derivation

Proof of Theorem 1:

From (4), the average structural function is written as:

yi,t+1|t ≡ E{εi,τ}tτ=0
[Yi,t+1|t]

Under independence assumption 2, this is equivalent to counterfactual conditional expectation

functions E[Yi,t+1|t|{Zi,τ}tτ=0]:

E[Yi,t+1|t|{Zi,τ}tτ=0] =

∫
F (Θi,t)dFΘi,t(Θi,t|{Zi,τ}tτ=0)

=

∫
F (Θi,t)PΘi,t(Θi,t|{Zi,τ}tτ=0)dΘi,t

=

∫ (∫
F (Θi,t)PΘi,t(Θi,t|{Zi,τ}tτ=0,Θi,t−1)dΘi,t

)
PΘi,t−1

(Θi,t−1|{Zi,τ}tτ=0)dΘi,t−1

(33)

The first equality holds from Assumption 2. The conditional CDF of variable X is represented

by FX and conditional PDF is represented by PX . The third equality holds from Bayes Rule.

Now consider the conditional PDF PΘi,t(Θi,t|{Zi,τ}tτ=0,Θi,t−1), under assumption 2 it can

be represented by PDF with respect to the i.i.d random variable εi,t:

PΘi,t(Θi,t = r′|{Zi,τ}tτ=0,Θi,t−1) = Pεi,t(H(Θi,t−1, Zi,t, εi,t) = r′|Zi,t,Θi,t−1)

= PΘi,t(Θi,t = r′|Zi,t,Θi,t−1) (34)

Furthermore, as εi,t is i.i.d across time, this conditional probability is time-homogenous con-

ditional on the same realization of Zi,t:

PΘi,t(Θi,t = r′|Zi,t = z,Θi,t−1 = r) = Pεi,t(H(r, z, εi,t) = r′)

= Pεi,t+s(H(r, z, εi,t+s) = r′)

= PΘi,t+s(Θi,t+s = r′|Zi,t+s = z,Θi,t+s−1 = r) ∀s > 0

(35)

Now one can discretize the continuous-state Markov Process.42 Denote the grid points

obtained for Θi,t as Dr = {xr}Nrr=1 and corresponding transition probability from state r to r′

as {pr,r′(z)}. Now consider a finite dimensional variable:

θri,t = PΘi,t(Θi,t = xr|{Zi,τ}tτ=0) ∀r ∈ {1, ..., Nr}
42Following Farmer and Toda (2017), one can discretize non-linear non-Gaussian Markov Process and match

exact conditional moments of the process, which is the same as my goal here. The details for the discretization

procedure are included in Algorithm 2.2 from their paper.
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Then it follows immediately from (33) that:

yi,t+1|t = E[Yi,t+1|t|{Zi,τ}tτ=0] =
Nr∑
r=1

F (xr)θ
r
i,t = f(θi,t)

Where the last equation is the definition of f(.) function in theorem 1.

As θi,t is a function of history of signals {Zi,τ}tτ , and it explicitly depends on θi,t−1 as well

as Zi,t. This can be easily seen by induction, for t = 0:

θri,0 = PΘi,0(Θi,0 = xr|Θi,−1, Zi,0)

For t = 1:

θr
′

i,1 = PΘi,1(Θi,1 = xr′ |Θi,−1, Zi,0, Zi,1)

=
Nr∑
r=1

PΘi,1(Θi,1 = xr′ |Θi,0 = xr, Zi,1 = z)PΘi,0(Θi,0 = xr|Θi,−1, Zi,0)

=
Nr∑
r=1

pr,r′(z)θri,0

Where the second equality from above follows from Markov Property (34) then with time-

homogeneity (35), one can get time t relation by induction:

θr
′

i,t =
Nr∑
r=1

pr,r′(Zi,t)θ
r
i,t−1 (36)

Equation (36) can be summarized as θi,t = h(θi,t−1, Zi,t) from theorem 1. �

B Double De-biased Machine Learning Estimator

In this section I follow the semi-parametric moment condition model of Chernozhukov et al.

(2018) and Chernozhukov et al. (2017). This is a general formulation that can be applied to

estimation problems that involve:

− A finite dimensional parameter of interest – the average marginal effect defined in (7) β;

− Nuisance parameters that is usually infinite dimensional, denoted as η;

− Moment Condition that is (near) Neyman Orthogonal, denoted as E[ψ(W,β, η)], where

W = {Y,X} are the data observed;

I first focus to derive the Neyman Orthogonal Moment Condition for the estimation prob-

lem of average marginal effect. Throughout this appendix, denote `(.) as objective function,

gt as average structural function that can be written as g({Xi,τ}tτ=0, θ−1) = f(h(Xi,t, θi,t−1)),

gjt,x as partial derivative of gt with respect to j-th element of X, then P (.) as the joint density

function of input variables X. Suppose the true functional form of Average Structural Equa-

tion is E[Yi,t+1|t|{Xi,τ}tτ=0] = gt,0 and the parameter of interest for each j-th element of the

vector of average marginal effect E[∂gt,0
∂Xj ] = βjt,0.
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B.1 Neyman Orthogonal Moment Condition

1. Begin by declaring joint objective function, at each time point t, denoteX ≡ {Xi,τ}tτ=0

for short-hand:

min
βjt ,gt

E[`({Y,X, θ−1}; βt, gt)]

`({Y,X, θ−1}; βt, gt) = 1/2(y − gt(X, θ−1))2 +
∑
j

1/2(βjt − g
j
t,x(X, θ−1))2

Following Chernozhukov et al. (2018), the only requirement for objective function is the

true value gt,0 and βjt,0 for ∀j minimize the objective function.

2. Concentrated-out non-parametric part:

gt,βt = argmingE[`({Y,X, θ−1}; βt, gt)]

Need to derive gt,βt using functional derivative. Notice:

E[`({Y,X, θ−1}; βt, gt)] =

∫
E[`()|X, θ−1]P (X, θ−1)d(X, θ−1) (37)

≡
∫
L({X, θ−1}; βt, gt, gt,x)d(X, θ−1)

Using Euler-Lagrangian Equation:

0 =
∂L
∂gt
−

J∑
j

∂

∂xjt
(
∂L
∂gjt,x

) (38)

= −(E[Y |X, θ−1]− gt(X, θ−1))P (X, θ−1)︸ ︷︷ ︸
≡ ∂L
∂gt

−
J∑
j

∂

∂xjt

(
− (βjt − g

j
t,x(X, θ−1))P (X, θ−1)

)︸ ︷︷ ︸
≡ ∂L
∂g
j
t,x

= −(E[Y |X, θ−1]− gt(X, θ−1))P (X, θ−1)+

J∑
j

(
− gjt,xx(X, θ−1)P (X, θ−1) +

∂P (X, θ−1)

∂xjt
(βjt − g

j
t,x(X, θ−1))

)
The concentrated-out non-parametric part at time t then is given by:

gt,βt(X, θ−1) = E[Y |X, θ−1] +
J∑
j

(
gjt,xx(X, θ−1)− ∂ln[P (X, θ−1)]

∂xjt
(βjt − g

j
t,x(X, θ−1))

)
3. Concentrated Objective at each time t:

min
βt

E[1/2(Y − gt,βt(X, θ−1))2 +
∑
j

1/2(βjt − g
j
t,βt,x

(X, θ−1))2]
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Take F.O.C with respect to βjt and evaluate at gt,βt = gt,0:

E[βjt − g
j
t,0,x(X, θ−1) +

∂ln(P (X, θ−1))

∂xj
(Y − gt,0(X, θ−1))] = 0

Now notice two things here:

− In this set-up basically at each time t the gt,0() function is different, so that βt is different

as well. Without proper regularity the g function could be non-stationary. This is when

the markov assumptions come to play. The assumptions with f() and h() functions

basically interpret the time-varying βt is because of different states θt−1.

− With the previous approach, we get moment condition of βjt instead of βj,they are

different because (1) gt,0(.) function is different at each t; (2) P (X, θ0) is changing at

each t.

The first problem is solved by the Markov property and hidden variable:

gt,0({Xi,τ}tτ=0, θi,−1) ≡ E[Yi,t+1|t|{Xi,τ}tτ=0, θi,−1] = f(θi,t) = f(h(θi,t−1, Xi,t))

Plug this into the moment condition:

E[βjt − f ◦ hxj(θi,t−1, Xi,t) +
∂ln(P (X, θ−1))

∂xj
(Y − f ◦ h(θi,t−1, Xi,t)] = 0 (39)

The second problem can be solved by assuming dependency of Xi,t and Xi,t−s. As θ−1

are assumed to be zeros in practice, which is deterministic. Here I assume variables Xi,t

follow a VAR(1) process so that:

P (Xi,t, Xi,t−1, ..., Xi,0) = P (Xi,t|Xi,t−1, ..., Xi,0)P (Xi,t−1|Xi,t−2, ..., Xi,0)...P (Xi,0)

= P (Xi,t|Xi,t−1)P (Xi,t−1|Xi,t−2)...P (Xi,0)

This leads to the fact that
∂ln(P (Xi,t,Xi,t−1))

∂Xj
i,t

=
∂ln(P (Xi,t,Xi,t−1,...Xi,0))

∂Xj
i,t

. For this reason, in

practice, I just need to estimate the joint density function P (Xi,t, Xi,t−1). Then equation

(39) leads to moment condition (9) given the fact that g({Xτ}tτ=0, θ−1) ≡ f◦h(θi,t−1, Xi,t).

B.2 Verifying Moment Condition is Orthogonal

This can be done by computing the Frechet Derivative with respect to nuisance parameter g

of the moment condition E[ψ(W,β, η)], notice that η = {g, P}. The estimate of g will later be

obtained from RNN. For sake of simplified notation, I drop the t and consider 1 dimensional

case, but the appliction can be easily extended to multidimensional case.

ψ(W,β, η) ≡ β − g′(X) +
P ′(X)

P (X)
(E[Y |X]− g(X)) (40)
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Define functional F : C(R)→ C(R):

F (g)(β,X) = E[ψ(W,β, η)]

The Frechet Derivative along direction v is given by:

F (g + v)− F (g) = E[−v′(X)− P ′(X)

P (X)
v(X)] (41)

= lim
δ→0

E[−v(X + δ)− v(X)

δ
− P (X)− P (X − δ)

P (X)δ
v(X)]

= lim
δ→0

1/δ[−
∫
X

v(X + δ)P (X)dX +

∫
v(X)P (X)dX

−
∫
v(X)P (X)dX +

∫
v(X)P (X − δ)dX]

= lim
δ→0

1/δ[

∫
y

v(y + δ)P (y)dy −
∫
x

v(x+ δ)P (x)dx]

= 0

B.3 High Level Assumptions on Nuisance Parameters

To ensure the asymptotic property of estimate β̂ obtained from DML approach to hold, I

refer to Theorem 3.1 from Chernozhukov et al. (2018). First denote the moment condition

derived in Appendix B.1 as ψ(W,β, η), where β is the parameter of interest, X is data in

use and η = {g, P} are nuisance parameters estimated from functional estimation, where g(.)

is ASF and P (.) is joint density function of X. To apply this theorem one needs to verify

three condition43:

1. Moment condition(scores) is linear in parameter of interest, β:

ψ(W,β, η) = ψa(W, η)β + ψb(W, η)

2. (Near) Neyman Orthogonality of score ψ(W,β, η);

3. Fast enough convergence of nuisance parameters η = {g, P}. Notice such condition is for-

mally described by Assumption 3.2 in Chernozhukov et al. (2018). And the authors dis-

cussed the sufficient conditions for this assumption to hold: ψ is twice differentiable and

E[(η̂(X)− η0(X))2]1/2 = o(n−1/4). And the variance of score ψ, E[ψ(W,β, η)ψ(W,β, η)′]

is non-degenerate.

Condition 1 is obvious given the Neyman Orthogonal score derived in Appendix B.1:

equation (40) is linear in β. Condition 2 is verified in Appendix B.2.

43In Chernozhukov et al. (2018) these conditions are defined formally by their Assumption 3.1 and 3.2.
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The convergence speed requirement in condition 3 needs a bit of work. In practice g(.)

function will be estimated by RNN and P (.) function is estimated with gaussian kernel density

estimation. For RNN the convergence speed of estimate ĝ is offered by Theorem 1 of Farrell

et al. (2021). To achieve the convergence speed described there, one needs to put restrictions on

width and depth of neural network used to approximate g(.). Specifically, for input dimension

d, sample size n and smoothness of function g(.), θ, one needs width H � n
d

2(θ+d) and depth L �
log n. These conditions will guarantee a convergence speed on a level of {n−θ/(θ+d) log8 n+ log logn

n }
which is faster than n−1/2.44 My baseline architecture satisfies these restrictions.

For convergence speed of joint density P (.), it is estimated by gaussian kernel density

estimation with Silverman Rule of Thumb for bandwidth selection. Denote the order of

gaussian kernel as ν, and the input dimension of density function P (.) as d′ the asymptotic

mean integrated squared error (AMISE) is known to be O(n−2ν/(2ν+d′)). The convergence

speed requirement in condition 3 needs 2ν/(2ν + d′) > 1/2, or ν > d′/2.45 Notice the density

function here is a joint density for Xi,t and Xi,t−1 so its dimensionality is typically twice of

the input for RNN. I then need to use a higher order gaussian kernel with at least ν = 28 to

ensure the convergence speed requirement for the density estimator.

Finally, after verifying all three pre-conditions, according to Theorem 3.1 from Cher-

nozhukov et al. (2018), denoting the Jacobian matrix from the Neyman Orthogonal score

as J0 and the true value of nuisance parameter as η0:

J0 = E[ψa(W, η0)]

The DML estimator β̂ is then centered at true values β0 and are approximately linear and

Gaussian:
√
nσ−1(β̂ − β0) =

1√
n

n∑
i

ψ̄(Wi)→ N(0, Id)

Where ψ̄(.) is the influence function of the form:

ψ̄(Wi) = −σ−1J−1
0 ψ(Wi, β0, η0)

The σ2 is the variance that is given by:

σ2 = J−1
0 E[ψ(Wi, β0, η0)ψ(Wi, β0, η0)′](J−1

0 )′

Notice in my case ψa(W, η0) = 1 so that J0 = 1. This is the same distribution as if we plug in

the true nuisance parameters η0 and is enough for asymptotic inferences.

44See Theorem 1 in Farrell et al. (2021) for details.
45See Hansen (2009) for details
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C Examples

C.1 Example: Standard Noisy Information Model in Generic Learn-

ing Framework

In this subsection I take the standard noisy information model as an example and show how

it can be represented by the Generic Learning Framework. The purpose of this example

are three folds. First it gives an example of essential elements in the Generic Learning Model

including hidden states Θi,t, Average Structural Function and the transformed dynamic system

(6) in the context of a familiar learning model. Secondly it illustrates how RNN performs in

approximating the ASF (in this case linear) and estimating marginal effect without knowledge

of the exact functional form of learning model. Lastly as I consider a special case when

the expectation formation structure is still linear but OLS is mis-specified and show the

performance of RNN in estimating the average marginal effect. This exercise illustrates the

possible improvement in using RNN even in a linear case.
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support of Compute Canada (www.computecanada.ca). All the remaining errors are mine.
†Chenyu Hou: Vancouver School of Economics, University of British Columbia. Email:

sevhou1989@gmail.com
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Data Generating Process: Consider agents want to predict inflation one period from

now denoted as πi,t+1|t. At time t, they can observe two signals {πi,t, si,t}. There are two

latent variables {πt, Lt} that they need to make inference of to form expectation of inflation.

Represent the Actual Law of Motion as a Gaussian Linear State Space Model:

[
πt

Lt

]
≡ Xt = AAAXt−1 + εt (42)

Where AAA describes how latent states Xt evolves along time, εt is i.i.d shock each period.

Assume for simplicity the agent’s Perceived Law of Motion is the same as (42). Agents do

not observe Xt directly, instead they observe a noisy signals about it. Their observational

equation is: [
πi,t

si,t

]
≡ Oi,t = GGGXt + νi,t (43)

Both shock εt and νi,t are i.i.d and follow normal distribution with covariance matrix R and

Q:

εt ∼ N(0, R) νi,t ∼ N(0, Q)

This describes the standard noisy information model with two latent states. They use a

stationary Kalman Filter to form prediction of the latent variable Xi,t+1|t, where KKK is the

Kalman Gain.

[
πi,t+1|t

Li,t+1|t

]
≡ Xi,t+1|t = AAA(Xi,t|t−1 +KKK(Oi,t −GGGXi,t|t−1)) (44)

The Generic Learning Formulation The stationary Kalman Filter is a special case of

Generic Learning Model. First notice the i.i.d error νi,t satisfies assumption 2. The expectation

is also formed by filtering step and updating step:

Xi,t|t = Xi,t|t−1 +KKK(Oi,t −GGGXi,t|t−1) (Filtering Step)

Xi,t+1|t = AAAXi,t|t (Forecasting Step)

Replace Xi,t+1|t with Ŷi,t+1|t and define the ”now-cast” variable Xi,t|t as latent state variable

Θi,t in Generic Learning Model, we can re-write Kalman Filter (44) as equation (45) and (46),

which reflect the generic formulation of updating step (2) and forecasting step (3). It is obvious

that in the stationary Kalman Filter case, both F (.) and H(.) are linear.

Ŷi,t+1|t = AAAΘi,t (45)

Θi,t = (A−KGAA−KGAA−KGA)Θi,t−1 +KGKGKGXt +KKKνi,t (46)
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Average Structural Function I then turn to the ASF implied by Kalman Filter (45) and

(46). This is simply done by taking expectation of Ŷi,t+1|t conditional on observables Xt. The

goal is to integrating out the i.i.d noise term νi,t which is not observable by econometrician.

Now we can define the sufficient statistics for Θi,t as:

θi,t = E[Θi,t|{Xτ}tτ=0] (47)

Taking the expectation of (45) and (46) conditional on history of the observable {Xτ}tτ=0

it immediately follows:

yi,t+1|t ≡ E[Ŷi,t+1|t|{Xτ}tτ=0] = AAAθi,t

θi,t = (A−KGAA−KGAA−KGA)θi,t−1 +KGKGKGXt

This illustrates the link between ASF with the underlying expectation formation model:

in the linear case with mean zero error νi,t, the function form from ASF, f(.) and h(.) are

linear and are identical to those from the underlying expectation formation model.

Estimation with Simulated Sample Now suppose as econometricians we want to esti-

mate marginal effect of two signals {πt, si,t} on πi,t+1|t. The standard approach is to directly

estimate the reduced-form equation derived from (44) with OLS. This requires Xi,t+1|t ob-

served for each t and the learning model is correctly specified. However in reality it is possible

that expectation on latent state Li,t+1|t is not observable or not considered in the model1. If

this is the case OLS with only lag term πi,t|t−1 is included in the regression suffers from omitted

variable problem.

On contrary, estimation with RNN does not require a correct specification on latent variable

Θi,t, and it doesn’t need Li,t|t−1 to be observable at all. To show this I simulated 100 random

samples according to the Kalman Filter as in (44). In this experiment I consider three different

models to estimate marginal effect of the two signals {πt, si,t}: (1) the RNN with sequence

of {πτ , si,τ}tτ=0 and lag expected inflation πi,t|t−1 as input2; (2) mis-specified OLS that uses

the same set of variables as dependent variable, the OLS is mis-specified because Li,t+1|t is

not available to econometricians; (3) correctly specified OLS with Li,t+1|t observable, which is

typically not available. I’ll show RNN can still recover the linear relationship between signal

1For example, when agent form expectation on inflation, if they believe in a three equation New Keynesian

Model, they may also want to infer demand and supply shocks as unobserved states. In a Kalman Filter that

takes only inflation as unobserved state, OLS will suffer from omitted variable problem.
2Interestingly, for estimating ASF and marginal effect, one do not need to include the lag expectation

πi,t|t−1 in RNN, only history of signals are sufficient. The results without lag expectation are similar to these

results I include here.
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and expectational variable as well as obtain comparable estimate on signals as the correctly

specified OLS estimator (BLUE in this case), whereas mis-specified OLS is heavily biased.

I first depict the recovered average structural function between inflation expectation πi,t+1|t

and signals πt, si,t in Figure 6. The red solid line is the true Average Structural Function

implied by the Kalman Filter (44) and the black solid line is the mean of estimated ASF from

100 random samples using RNN. I also plot estimated ASF for each sample in grey color.

The top panel in Figure 6 is the ASF along dimension of realized inflation πt and the bottom

panel is along signal si,t. It is obvious that the estimated ASF all indicate linear relationship

between signals and expected inflation. This means RNN will recover a linear function if the

underlying expectation formation model is indeed linear. It also shows the stability of the

performance of RNN: with 100 random samples it recovers the ASF relative close to the truth.

Figure 6: Estimated Average Structural Function from random samples using RNN. Function depicts change

of expected variable in response to corresponding signal change by δ. Panel (a): expected inflation as function

of inflation signal πt. Panel (b): expected inflation as function of private signal si,t. Red solid line is the

actual ASF implied by linear Kalman Filter. Solid black line is the mean of estimated ASF from 100 random

samples. Grey lines are estimated ASFs from each random sample.

I then report the (naive) estimates of marginal effects from RNN and compare them to

those from the other two models considered. The following table shows the estimation result

from RNN, mis-specified OLS and correctly specified OLS. In this table, the first column is

mean squared error on the whole sample, the second column is estimated marginal effect on
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signal πt and third column is estimated marginal effect on signal si,t. In brackets I report the

standard deviation of the estimate using 100 simulated random samples. Not surprisingly,

correctly specified OLS is BLUE in this case with unbiased estimates and small standard

deviations. However the key thing to notice here is that mis-specified OLS is biased due to

the omitted latent state, whereas RNN has result that is consistent with the true marginal

effect, with acceptable standard deviations across 100 samples.

Table 7: Performance of RNN v.s. OLS

MSE πt si,t

(1) RNN 2.91 0.82 0.276

(0.054) (0.037) (0.003)

(2) OLS mis-specified 3.296 0.720 0.279

(0.023) (0.033) (0.001)

(3) OLS correct 2.835 0.841 0.277

(0.014) (0.005) (0.001)

Truth 0.842 0.277

* The first column is mean squared error on the whole

sample, the second column is estimated marginal effect

on signal πt and third column is estimated marginal

effect on signal si,t. In brackets I report the standard

deviation of the statistics using 100 simulated random

samples.

C.2 Example: Constant Gain Learning in Generic Learning Frame-

work

In this subsection I will illustrate how a standard Constant Gain Learning model can be

analytically expressed in the form of the Generic Learning Framework. An example of such

model is from Evans and Honkapohja (2001). For simplicity I consider the one dimensional

case, where an agent observes realized inflation πt at each time t and try to form forecast about

πt+1. I also drop the individual indicator i to same some notations, but the framework can be

easily generalized to multi-dimensional multi-agent case. The agent believes in a ”Perceived

Law of Motion” (PLM) about how inflation is evolving in time and try to estimate the relevant

parameters in the PLM using observed data. To do this, she will run OLS at every period

and apply a constant weight to the newly available data. With this learning scheme agent

perceives different values for parameters in their PLM and form expectation accordingly. The

model features a constant gain γ, which represents the weight the agent put on newly observed

data. Let’s assume the PLM the agent believes in is an AR(1) process:
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πt+1 = b0 + b1πt + ηt+1 (PLM)

In this setup, the parameters agent try to learn from realized data are b0 and b1. ηt+1

stands for the mean zero i.i.d random shock realized in each period. The agent uses and OLS

method to estimate b0 and b1 every period, and this process can be formulated recursively

such that in each period the agent forms a different estimate bt:

bt = bt−1 + γR−1
t XXX t−1(πt − b′t−1XXX t−1)

Rt = Rt−1 + γ(XXX t−1XXX
′
t−1 −Rt−1)

XXX t = [1 πt]
′ b = [b0 b1]′

At time t, the agent then forms expectation about future inflation using the PLM, with

some i.i.d noise attached on top of the endogenous component that comes from constant gain

learning process, εt. This exogenous component is sometimes interpreted as ”sentiment”, for

example in Cole and Milani (2020).

Etπt+1 = b′tXXX t + εt (48)

Now suppose the agent is learning with the above set-up. As observers we see: XXX t, Etπt+1

up to each time t. We do not see the hidden variables such as bt and Rt. We also don’t know

the function form that connects the hidden variables, observables and expectational variables.

The goal now is to represent the system described by this constant gain learning model in

terms of the Generic Learning Framework. Define the hidden states Θt = [XXX t, bt, Rt, εt]
′. The

recursive mapping from observables (and previous hidden states) to hidden states H(.) then

can be given by:

Θt = H(XXX t,Θt−1, εt)

Where

XXX t ≡ H1(XXX t,Θt−1, εt) = XXX t

Rt ≡ H2(XXX t,Θt−1, εt) = Rt−1 + γ(XXX t−1XXX
′
t−1 −Rt−1)

bt ≡ H3(XXX t,Θt−1, εt) = bt−1 + γR−1
t XXX t−1(πt − b′t−1XXX t−1)

εt ≡ H4(XXX t,Θt−1, εt) = εt

Notice here, as Θt can be any measurable function of XXX t, Θt−1 and εt, it can certainly

contain elements such as the inputXXX t. AlthoughXXX t is actually observable, it remains ”hidden”

to econometrician as without further knowledge on expectation formation process, one will

not know what the exact mapping from observables to elements of Θt is. Then the expectation

formation model F (.) is given by:
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Etπt+1 ≡ F (Θt) = b′tXXX t + εt

Now I show that the expectation formed by constant gain learning can be analytically

represented by the Generic Learning Framework described by updating step (2) and forecasting

step (3). The Average Structural Function implied by this setup is straight forward: one can

define θt = [XXX t, bt, Rt]
′ and obtain f(.) and h(.) by integrating out the i.i.d random variable

εt.

D Appendix on Empirical Findings

D.1 More on Time-varying Marginal Effect

Figure 7:
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To show the same attention shift pattern holds for all signals and expectations related to

economic condition, I first plot the same heatmap for marginal effect of unemployment signals

on expectation on unemployment change. This is Figure 7 below. It shows the same pattern

holds as in Figure 3: in recession marginal effect of future signal is bigger and the opposite is

true for past signal.

For marginal effects of cross-signals, for example, the impact of unemployment signal on

economic condition expectation. These results are shown in Figure 8 below. It shows first

unemployment signals generally have negative impact on expectation of economic condition.

Furthermore, when looking at marginal effects of past signals, such an impact is again weak

during recession periods whereas the marginal effects of future signals are again with bigger

magnitudes during recessions.

Figure 8:

However these attention shift during recession and ordinary period only holds significantly

for expectations and signals related to indicators about economic conditions. Figure 9 plots

the time-varying marginal effects for indicators on inflation and interest rate, there is no such

attention shift at presence. The DML estimator also suggest the average marginal effects in

recession and ordinary periods are not significantly different.
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Figure 9:

D.2 Robustness of DML using NBER Recessions

Table 8: Average Marginal Effect of Past and Future Signals: NBER Recession

Expectation: E∆yt+1|t E∆ut+1|t

Signal βbad βord βbad = βord βbad βord βrec = βord

(std) (std) (p-val) (std) (std) (p-val)

Ft∆ut+1 −0.047∗∗∗−0.047∗∗∗−0.047∗∗∗ 0.005 ¡0.01 0.033∗∗∗0.033∗∗∗0.033∗∗∗ 0.009∗∗∗ ¡0.01

Future Signal (0.006) (0.002) (0.004) (0.002)

Ft∆yt+1 0.05∗∗∗0.05∗∗∗0.05∗∗∗ 0.02∗∗∗ ¡0.01 −0.024∗∗∗−0.024∗∗∗−0.024∗∗∗ −0.01∗∗∗ ¡0.01

(0.007) (0.003) (0.003) (0.001)

∆ut −0.016∗ −0.018∗∗∗ 0.86 0.012∗∗∗ 0.01∗∗∗ 0.74

Past Signal (0.008) (0.003) (0.005) (0.002)

∆yt 0.003 0.015∗∗∗0.015∗∗∗0.015∗∗∗ 0.05 −0.004∗∗ −0.01∗∗∗−0.01∗∗∗−0.01∗∗∗ 0.04

(0.004) (0.002) (0.002) (0.001)

* ***,**,*: Significance at 1%,5% and 10% level. βbad is average marginal effect in bad periods defined by NBER

recession dates, βord is average marginal effect in ordinary period. βbad = βord is test on equality between

average marginal effects, its p-value is reported for each expectation-signal pair. Bold estimates denote the

marginal effect with significantly bigger magnitude. Standard errors are adjusted for heteroskesticity and

clustered within time.
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Table 8 shows the DML estimates for marginal effects of past and future signals on real GDP

growth and unemployment rate, during or out of recession. And the recession dates in use

are those from NBER. Although ”bad times” defined in Section 4.2.2 are considered more

plausible for reasons discussed before, using NBER recession dates won’t qualitatively change

the DML estimates much. Future signals still significantly have higher weights during bad

periods and the weights on past signals are usually with bigger magnitude in ordinary period.

D.3 Decompose Time-varying ME with other signals

Figure 10: Time-varying marginal effect of past and future signal on real GDP growth. Top panel: marginal

effect of future signal, βEyFy,t; bottom panel: marginal effect of future signal, βEyy,t . The red curve: marginal

effect created by estimated ASF with all signals. The blue curve: marginal effect created by ASF with only

exposure of economic condition news.

Figure 10 presents how news exposure affects the marginal effects on future and past

signals. It shows that news exposure only creates higher weights on future signals (from SPF)

exactly when there is more news on economic status but not the weight change of past signals.

According to Table 4, news exposure only accounts for 28% and 15% time-variation of weights

on future and past signals, whereas economic conditions alone explain more than 50%. These

suggest the explanation that attention-shift is majorly a result of more information available

in recessions is unlikely to be true. On the other hand, economic condition signals without

news exposure successfully recreate the key attention-shift pattern. This indicates economic

condition signals explain a much bigger fraction of the time variation and are likely to be the
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main driving force for attention shift.

In Figure 11 I report the same exercise as in Figure 4 and 10 but with only signals on

inflation, interest rate, and oil prices as input. The results show that information on prices

alone cannot recreate the attention-shift pattern.

Figure 11: Time-varying marginal effect of past and future signal on real GDP growth. Top panel: marginal

effect of future signal, βEyFy,t; bottom panel: marginal effect of future signal, βEyy,t . The red curve: marginal

effect created by estimated ASF with all signals. The blue curve: marginal effect created by ASF with only

interest rate and inflation signals.

D.4 Variance Decomposition for Unemployment Expectation

In Table 9 I summarize the variance decomposition of time varying marginal effects of unem-

ployment signal on unemployment expectations. It is consistent with what I find for expecta-

tion on economic condition. First the signals that explain most of the time-variation are those

related to economic conditions. News exposure also explain a significant part of variation,

especially for past signals. Finally these signals affect expectations through both accumulated

states and covariates. Current signal usually plays a more important role in explaining the

time-variation.

E Model Appdendix

11



Table 9: Variance Decomposition of Time-varying Marginal Effects: E∆u

Marginal Effect on Past Signal: βEuu,t

Signal Type: Economic Condition Inflation Interest rate News Total

State θi,t−1 28% 3% 6% 20% 57%

Channel: Covariate Zi,t 23% 2% 13% 5% 43%

Total 52% 5% 18% 25%

Marginal Effect on Future Signal: βEuFu,t

Signal Type: Economic Condition Inflation Interest rate News Total

State θi,t−1 19% 6% 7% 4% 36%

Channel: Covariate Zi,t 36% 4% 9% 15% 64%

Total 54% 10% 16% 19%

E.1 Signals and Beliefs

At the beginning of time t, agent is endowed with some prior beliefs on states dt and ηt, this

reflects the latent states in empirical part. I denote the prior of foundamentals as:

XXX0 ≡

[
d0

η0

]
∼ N(X̂XX0,Σ0)

Where X̂XX0 stands for prior mean of the states XXX t.
3

The agent is Bayesian Learner and forms posterior beliefs using Kalman Filter. Agent

updates his belief twice: first, he is exposed to a normal noisy signal z0 about current state

dt. The variance of the noise is σ2
z . The agent then updates her belief on XXX t. Because both

prior and noise are normally distributed, the updated prior is also normal.

XXX t|0 ≡

[
dt|0

ηt|0

]
∼ N(X̂̂X̂X t|0,Σt|0)

I define XXX t|0 as conditional prior as it contains information about dt. Specifically, its mean

X̂̂X̂X t|0 is a function of the unconditional prior mean and signal z0, which contains information

about dt and noise. However, the agent has no control of the variance of this noise σ2
z . It will

3In steady state one can think of the prior mean being at the long-run mean of each state, which is 0.

When an agent observes a history of signals before time t, she may have a prior mean different from 0. This

then can be thought of as a form of the “internal states” described in Section 4.2.4.
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not be in the agent’s choice set and will be treated as given when the agent solves the rational

inattention problem later.

The second time the agent updates belief is after observing signal ZZZt. He forms a posterior

belief about the fundamentals next period. As this is a two-period model, only belief on dt+1

is relevant. Again the agent forms belief using Bayes Rule:

XXX t+1|t ≡

[
dt+1|t

ηt+1|t

]
∼ N(X̂̂X̂X t+1|t,Σt+1|t)

Where posterior mean X̂̂X̂X t+1|t and variance Σt+1|t is defined as:

X̂̂X̂X t+1|t ≡ E[XXX t+1|ZZZt] = A

(
(I −KG)X̂̂X̂X t|0 +KZtZtZt

)
(49)

Σt+1|t = AΣt|0A
′ − AKGΣt|0A

′ +QQQ (50)

And Kalman Gain is given by (51), where matrices A and G are given by exogenous

parameters {ρ, ρη} about the fundamentals.

K = Σt|0G
′(GΣt|0G

′ +R)−1 (51)

From (49)-(51), the choices of signal precision will affect both mean and variance of his

posterior through the variance-covariance matrix on noise, R. Signals with lower variance are

more accurate, and the agent will put higher weights on these signals. Each different choice

of signal accuracy (represented by the variance-covariance matrix on noise, R) gives the agent

a different information set. Given different information sets, the agent will form different

posterior beliefs even if the signals realized are the same.

E.2 Two Special Information Set

At this point, it is worth describing several special information sets:

dt Fully Observable: At time t, an agent has only perfect information about dt and no

information on ηt. This happens when σ2,ξ = 0 and σ1,ξ → ∞. In this case agent will form

adaptive expectation about return in the future: EA
t dt+1 = ρdt.

Both fundamentals XXX t Fully Observable: At time t, an agent has all the information

about fundamentals at time t. Given the distribution of ε1,t+1, an agent with this information

set can form a posterior belief on the distribution of dt+1 with mean being expressed as (23).

This can be thought of as the Full Information Rational Expectation benchmark in this model

as the forecasting error in this case will only be the unpredictable shock ε1,t+1.
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An information set with an arbitrary variance-covariance matrix on noise, R, can be

thought of as being in the middle of the two information sets described above. For each infor-

mation set It given, the agent will solve her optimization problem (17) accordingly. Different

information sets will then result in different choices, thus giving the agent different expected

utility. In this sense, information has a value that can be evaluated with her expected utility.

I will first illustrate the value of information in this model using different information sets

described here.

E.3 State-dependent Value of Information

In this section, I explicitly compute the agent’s expected utility conditional on different infor-

mation sets given. I will illustrate that more information is valuable to agents as it increases

their expected utility. Furthermore, the improvement of expected utility obtained by possess-

ing more information depends on the current state of the economy, dt.

I solve problem (18) under the two different information sets introduced before as well as

the case with no extra information. Then I evaluate the agent’s ex ante expected utility.

E[u(et − s∗t+1(It)) + βu(rt+1s
∗
t+1(It) + et+1)|I0]

Recall the utility function takes the form u(ct) = ct − bc2
t , and in the information set I0, it

contains information about the current state dt. The state-dependency seen later comes from

the fact that the value of information changes as the mean of prior contained in I0 changes.

The quadratic function form makes the point that the common mean-independent result of the

rational inattention model is not due to linear quadratic preference per se, rather it’s because

of the quadratic approximation for the entire problem. However, the results are not restricted

to such a utility function form. Recall that given different information set It, the first order

condition for problem (18) takes the form:

s∗t+1(It) =
−1 + 2bet + (β − 2bβet+1)E[rt+1|It]

2b(1 + βE[r2
t+1|It])

(52)

For illustration purposes, I solve the model numerically using the following parametrization:

b = 1/40, β = 0.95, et = 10 and et+1 = 5. For the fundamentals I consider ρ = 0.2, ρd = 0.9,

σ1,ε = σ2,ε = 0.15. The prior beliefs on states dt and ηt are assumed to be mean zero with

the stationary variance-covariance matrix obtained from the recursive Kalman Filter. The

standard deviation of noise on passive signal is σz = 0.22. In Figure 12 I plot the ex ante

expected utility conditional on various information sets, as functions of realized dt. The thick

black curve is expected utility when there’s no more information other than the initial passive

signal on dt available to the agent. The thick blue curve is expected utility when dt is fully

observable and the thick red curve is when both SPF and dt are fully observable (the FIRE

14



benchmark)4. The curves between the thick lines depict the increase in expected utilities as

the precision of the signal increases (or the variance of noise decreases).

Figure 12: Expected Utility under Different Information Set

Black thick line: Expected utility when no more information other than initial passive signal on dt; blue thick

line: expected utility when dt becomes fully observable; red thick line: when both SPF and dt fully observable.

Blue thin lines are expected utilities when there are noise attached to extra signal on dt, the more accurate the

signal, the closer it gets to dt fully observable case. Red thin lines are expected utilities when noise attached

to signal on SPF, and dt is fully observable. The more accurate the signal, the closer it gets to full information

case.

There are two key messages from Figure 12. First, more information improves the agent’s

expected utility progressively: with a more accurate signal on dt, the agent resolves the uncer-

tainty about the current state and his utility increases at any given dt from the black line to

the blue line; and it continues to increase as the signal on SPF becomes more accurate, from

blue curve to red curve. This is a typical result of informational models.

Secondly and more importantly, the value of information is decreasing in realized state dt.

This can be seen from the differences between expected utilities with different information

sets. When realized state dt is low and negative, getting the same amount of information

will increase the agent’s expected utility by more than the case when dt is high. In other

4With the specific law of motion assumed in (19) - (21) together with definition of SPF (23), the case with

only SPF fully observable will coincide with the FIRE case.
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words, information is more valuable when the economic status is bad. This is a result different

from that of standard rational inattention literature. The reason for such a difference is the

non-linearity in the optimal saving/investment function.

The difference between expected utility comes from differences of optimal investment (52).

The fact that optimal saving is a non-linear function of both posterior mean and posterior

variance of state dt+1 makes the expected utility mean-dependent. To see this, we can utilize

the assumption of the quadratic utility function, and re-write the expected utility as the

following form:

E[U(s∗t+1(It))] = E[(et − st+1)− b(et − st+1)2 + β(et+1 + rt+1st+1)− βb(et+1 + rt+1st+1)2]

= E[− b(1 + βr2
t+1)︸ ︷︷ ︸

≡χ

s2
t+1 + (2bet − 1 + βrt+1 − 2βbet+1rt+1)st+1 + (et − be2

t + βet+1 − βbe2
t+1)]

= E[−χ(s2
t+1 −

2bet − 1 + βrt+1 − 2βbet+1rt+1

χ︸ ︷︷ ︸
≡2s̄t+1

st+1 +
(2bet − 1 + βrt+1 − 2βbet+1rt+1)2

4χ2
)

+
(2bet − 1 + βrt+1 − 2βbet+1rt+1)2

4χ
+ (et − be2

t + βet+1 − βbe2
t+1)]

= −E[χ(st+1 − s̄t+1)2] + E[
(2bet − 1 + βrt+1 − 2βbet+1rt+1)2

4χ
+ (et − be2

t + βet+1 − βbe2
t+1)]︸ ︷︷ ︸

≡M

Note in the above derivation all the expectations are conditional on initial information set

I0. M has nothing to do with information set It, thus the evaluating the expected utility under

choice of It is equivalent to evaluating the quadratic loss term E[χ(s∗t+1(It)− s̄t+1)2]. This is a

standard result from literature of Rational Inattention with linear quadratic preference. The

key difference here is s∗t+1 is non-linear in fundamentals.5 We can then write ante expected

utility as a form of “quadratic loss”:

E[U(s∗t+1(It))|I0] = −E[χ(s∗t+1(It)− s̄t+1)2|I0] +M (53)

The variable s̄t+1 is given by (54). It stands for the optimal investment under perfect foresight

when the agent observes dt+1 perfectly.

s̄t+1 =
−1 + 2bet + βrt+1 − 2bβrt+1et+1

2b(1 + βr2
t+1)

(54)

The transformed utility function (53) is usually referred to as a quadratic loss function in

rational inattention models, intuitively agent will seek to minimize the expected loss between

optimal choice under limited information set It and optimal choice under Full Information

Rational Expectation.6 From (53) it is obvious that if the optimal choice of s is linear in state

5In standard rational inattention models, the action will be linear in fundamentals thus optimal choice of

signal will not depend on prior mean of fundamentals. For example, see Maćkowiak et al. (2018) or Kamdar

(2019).
6It is worth noting that M is not involved in choosing the optimal information structure It as it is only

related to the actual distribution of rt+1.
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rt+1, the expected utility only depends on the posterior variance of rt+1 given information set

It. It is not related to the posterior mean of states or realized state at time t.

Using the transformed expected utility (53), I can explore reasons for the value of infor-

mation decreasing in dt. To see this, consider the cases with or without full information from

SPF. Conditional on the realization of a specific dt, without information from SPF agent faces

uncertainty from both ηt and ε1,t+1 being unobservable. With information from SPF uncer-

tainty from ηt is resolved. Because in both cases agents have no information on ε1,t+1, the

utility improvement comes solely from knowledge on ηt. For simplicity, I consider an extreme

case when ε1,t+1 = 0. Then s̄t+1 can be seen as the optimal saving choice when SPF is avail-

able. The utility loss of the agent not having information from SPF can then be evaluated by

differences between optimal savings with or without SPF observable, weighted by the agent’s

subjective belief.

In Figure 13 I depict the optimal saving choices at three realized values of dt: when the

current state is bad (dt = −0.32), neutral (dt = 0) and good (dt = 0.32). In each case, I plot

the optimal saving choice as a function of future state dt+1. The dotted line is the optimal

saving that the agent chooses when he only observes the initial signal on dt. It is a flat line

because the agent’s choice does not depend on dt+1 (or realization of ηt) when SPF is not

observable. The solid line is the optimal saving choice when SPF is observable to the agent.

This line is a function of dt+1 because under the assumption ε1,t+1 = 0, when SPF is observable

then ηt and dt+1 are fully observed. An important feature is then this function is increasing

and concave in dt+1. This is because the higher the return dt+1 is, the more agent wants to

save. The concavity comes from the fact that the substitution effect becomes weaker as the

return on asset increases and is finally dominated by the income effect.7

Now for agents without information from SPF, the solid line is not feasible. For a given

realized dt, the agent will evaluate her utility loss of not having information on ηt following

(53). This is done by measuring the distance between optimal saving choices with and without

information from SPF and computing the expected value of (the square of) this distance using

their posterior belief on dt+1 (ηt). In Figure 13 this belief is shown with a bar plot. When

realized dt is higher, the belief of distribution on dt+1 is centered at a higher mean. Because

of the non-linearity of the optimal saving choice, the average distance between saving choices

with and without information from SPF is higher when dt is low. This gives rise to the fact

that value of information from SPF is decreasing in dt.

With the simple structure presented above, I show the key pattern my model generates:

the value of information decreases in the state of the economy. The agent is willing to pay

higher costs to acquire information as the state of the economy gets worse. This gives the

key mechanism to create the time-varying marginal effect and non-linearity I documented

7Interestingly, if one would instead assume a riskless asset with a risky endowment in t + 1, the optimal

saving curve under full information will be linear and the value of information won’t depend on the current

state anymore.
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Figure 13: Optimal Saving under Full Information and Limited Information

Solid line: optimal saving choice under full information: when both dt and SPF are fully observable. Dash

line: optimal policy when SPF signal is not available. Bar plot: agent’s subjective belief on future state dt+1,

when SPF is not observable. Top left panel is when current state is very bad (dt = −0.32), top right panel is

when dt = 0 and bottom left panel is when current state very good, dt = 0.32.

with RNN. Because when agents can choose the precision of signals (thus information set)

optimally, they will make different choices during bad and ordinary times and this will result

in different weights on these signals.

E.4 Derivation of Information Cost

In this subsection, I derive the information cost measured by entropy in (25) following Mack-

owiak and Wiederholt (2009). Recall the state-space representation of fundamentals are:

XXX t+1 = AXXX t + εεεt, εεεt ∼ N(000,QQQ)

The initial noisy signal z0 and chosen signals ZZZt are given by:

z0 = dt + ξ0 = G0XXX t + ξ0, G0 = [1 0]

ZZZt = GXXX t + ξξξt, ξξξt ∼ N(000, R)
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First notice all the random variables XXX t, z0, ZZZt are normally distributed. The information set

I0 only contains a noisy Gaussian signal z0, the entropy of XXX t+1 given I0 is then:

H(XXX t+1|I0) = H(XXX t+1|z0) =
1

2
log2[(2πe)2detΣt+1|0] (55)

Where Σt+1|0 denotes the variance-covariance matrix of XXX t+1 given z0. The prior variance

covariance matrix of XXX t is denoted as Σ0, then the conditional variance-covariance matrix

Σt+1|0 is given by:

Σt+1|0 = AΣt|0A
′ +QQQ (56)

Where:

Σt|0 = Σ0 − Σ0G
′
0(G0Σ0G

′
0 + σ2

z)
−1G0Σ0 (57)

It is obvious Σt|0 by construction the posterior variance-covariance matrix for hidden states

XXX t after observing z0 derived from Kalman Filter.

Then recall It = I0 ∪ {ZZZt}, similar as above we have:

H(XXX t+1|It) = H(XXX t+1|z0,ZZZt) =
1

2
log2[(2πe)2detΣt+1|t] (58)

Where:

Σt+1|t = AΣt|0A
′ − AΣt|0G

′(GΣt|0G
′ +R)−1GΣt|0A

′ +QQQ (59)

Again by construction, the Σt+1|t is the posterior variance-covariance matrix for XXX t+1 after

observing {z0,ZZZt} derived from Kalman Filter. Moreover, it is obvious the uncertainty after

observing ZZZt is reduced compared to the uncertainty after only observing z0.

Now information cost is obtained by measuring uncertainty reduction induced by extra

information, using (58) and (55) we have the information cost in (25):

H(XXX t+1|I0)−H(XXX t+1|It) =
1

2
log2(

detΣt+1|0

detΣt+1|t
)

E.5 Derivation of E[rt+1|It] and E[r2
t+1|It]

From (49): (
E[dt+1|It]
E[ηt+1|It]

)
≡ X̂̂X̂X t+1|t = A

(
(I −KG)X̂̂X̂X t|0 +KZtZtZt

)
Where X̂XX t|0 = E[XXX t|I0] is the mean of belief on XXX t after observing passive signal z0. The prior

before observing z0 is denoted as XXX0 ∼ N(X̂XX0,Σ0) from Section E.1. Now denote the Kalman

Gain for observing z0 as K0, we can write:

X̂̂X̂X t|0 = (I −K0G0)X̂XX0 +K0z0 (60)
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Where G0 = ι = [10] as defined in Appendix E.4 and K0 is given by:

K0 = Σ0G
′
0(G0Σ0G

′
0 + σ2

z)
−1 (61)

Combine (49), (60) and (61) we have:

E[rt+1|It] = 1 + ιA

(
(I −KG)

(
(I −K0G0)X̂XX0 +K0z0

)
+KZt

)
= 1 + ιA

(
(I −KG)

(
(I − Σ0G

′
0(G0Σ0G

′
0 + σ2

z)
−1G0)X̂XX0 + Σ0G

′
0(G0Σ0G

′
0 + σ2

z)
−1z0

)
+KZt

)
(62)

Before I show the derivation of E[r2
t+1|It], it’s useful to consider what is V ar(dt+1|It). It

is the first element of posterior variance covariance matrix Σt+1|t, which is given by (59). So

V ar(dt+1|It) can be written as:

V ar(dt+1|It) = ιΣt+1|tι
′

= ι
(
AΣt|0A

′ − AΣt|0G
′(GΣt|0G

′ +R)−1GΣt|0A
′ +QQQ

)
ι′ (63)

Now we can derive E[r2
t+1|It]:

E[r2
t+1|It] = V ar(rt+1|It) + (E[rt+1|It])2

= V ar(dt+1|It) + (E[rt+1|It])2 (64)

= ι
(
AΣt|0A

′ − AΣt|0G
′(GΣt|0G

′ +R)−1GΣt|0A
′ +QQQ

)
ι′ + (E[rt+1|It])2 (65)

In the above equation, Σt|0 is given by (57), which contains σ2
z and prior variance Σ0. E[rt+1|It]

is given by (62), which depends on prior mean X̂XX0, precision (variance) of the signal R and

passive signal z0. From (62) and (65), it is clear that the optimal saving choice is a non-linear

function of all these variables related to the information friction.

Now to see how the ex-post weights on signal Zt depend on variances of signals R, denote

the weight on SPF signal as wspf and weight on signal about current state as wt, from (62)

we have: (
wspf

wt

)
= (ι′ ι′)AK

= (ι′ ι′)AΣt|0G
′(GΣt|0G

′ +R)−1 (66)

From we see first for given Σt+0, G and A, a lower variance of noise on signal (contained in

R) leads to higher weights put on corresponding signal. Moreover, as Σt|0 is affected by σ2
z ,

the weights on signals also change with σ2
z . This will be verified in Section E.7.1.

E.6 State-dependent Optimal Signals

Now turn to the rational inattention problem (26)-(28). I first show that the trade-off between

the benefit and cost of acquiring information changes with the current state dt. In Figure 14,
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I present the expected utility, information cost and the objective function in (26) when the

current state dt is negative, at mean zero and positive. The left panel describes how the

expected utility changes as the standard error of the current signal (σ2,ξ) changes for the three

cases of dt. Because at a different level of dt, the expected utility for the same signal precision

will be different, I normalize it by the utility at σ2,ξ =∞, which corresponds to the case when

the agent acquires no extra signal on the current state. It is obvious in all three cases of dt,

the higher(lower) the precision(standard error) of the signal, the higher the expected utility

comparing to the no information case. I then present the information cost for all three cases

and show that the information costs are the same across different levels of dt. This is because,

in (30), the passive signal z0 contains information about the current state dt thus making

the expected utility depending on it. Whereas in the information cost (32), the evaluation of

posterior variance is mean-independent, which means only the variance of the passive signal

matters in accessing the information cost so that the cost will not change as dt changes. The

key message from the left panel is that both the cost and the benefit of information increase

with the precision of the current signal. Meanwhile for the same level of signal precision, the

higher the current state dt, the lower the benefit from that signal.

Figure 14: Information Benefit, Information Cost and Households’ Objective: Function of

Current Signal

Left panel: the information benefit is evaluated by expected utility and plotted with solid lines, information

cost is evaluated by entropy cost and plotted with dashed line. Right panel: objective function is obtained by

information benefit minus cost and plotted with solid lines. The figure considers three different cases: current

state is high with dt = 0.07, current state is at its mean dt = 0 and current state is low at dt = −0.07.

Horizontal axis is standard error of noise on current signal, higher s.e. leads to lower weight. Vertical dashed

line in the right panel labels optimal s.e. for current signal in three scenarios.
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The agent’s objective function considers both the cost and benefit of acquiring information.

The right panel of Figure 14 then presents the objective function under the same three cases

of dt. A utility-maximizing agent will choose the current signal with a standard error that

maximizes her objective function. These choices under different states are represented by the

dashed line. The right panel then shows that when the current state is worse, the agent will

choose a higher precision and a lower standard error for the current signal.

These patterns hold true for precision on signals about SPF as well. In Figure 15, I again

show a similar graph as in Figure 14 but for signals on SPF. The major difference between

this figure and Figure 14 is that expected utility is computed assuming σ2,ξ = 0.001, which

means the agent chose a very precise current signal.8 All the objects plotted in Figure 15 are

then functions of the precision on SPF signal, σ1,ξ. Similar to that in Figure 14, we see that

both the benefit and the cost increase when the agent acquires more information on SPF.

Meanwhile, the optimal precision of the SPF signal decreases with the current state dt.

Figure 15: Information Benefit, Information Cost and Households’ Objective: Function of

SPF Signal

Left panel: the information benefit is evaluated by expected utility and plotted with solid lines, information

cost is evaluated by entropy cost and plotted with dashed line. Right panel: objective function is obtained by

information benefit minus cost and plotted with solid lines. The figure considers three different cases: current

state dt = 0,−0.26 and −0.52. For dt > 0 the agent will always choose precision that leads to weight zero

because here I plot all the objects under σ2,ξ = 0.001. Horizontal axis is standard error of noise on future

(SPF) signal, higher s.e. leads to lower weight. Vertical dashed line in the right panel labels optimal s.e. for

future (SPF) signal in three scenarios.

8However, changing the level of σ2,ξ, in this case, will not change the results qualitatively.
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E.7 Comparative Statistics for Rational Inattention Model

I now examine the impacts of changing model parameters σz and prior mean X̂XX0, on the

optimal signal choices.

E.7.1 Impact of Passive Signal Precision σz

An important parameter in the information friction proposed in this chapter is the precision of

the passive signal that the agent is exposed to. This passive signal z0 will contain information

about the current state dt, thus making the agent’s optimal choice of precision dependent on

this state. The precision of this signal then determines the prior variances that the agent

considers to evaluate the benefit and cost for more information. Through this channel, it will

also affect the agent’s optimal choices on signal precisions.

In Figure 16 I show again the optimal weights on current and SPF signals as functions of

current state dt, with different values of σz. The left panel shows the results for weights on

current signals. First, notice higher precision on the passive signal (lower σz) leads to higher

weight on the current signal to start with. This shows up in the figure as a higher weight in the

flat area before the agent puts excess weight on the current signal. Intuitively, this means the

agent already has a better understanding of the current dt before choosing the extra signals

on the current state and SPF. This leads to the fact that in the right panel, the agent with

the lowest σz will start to pay attention to the SPF signal at a relatively higher state, because

the information cost for choosing that precision level is relatively lower to her. An extreme

example will be that when σz = 0, which implies that the agent has perfect information on dt.

In this case, we will see her only choosing an extra signal on SPF starting from a relatively

high value of dt.

Another interesting aspect in Figure 16 is that when the quality of the passive signal is

very low so that σz is quite high, the agent’s optimal choices of signal precisions will not

depend on the current state dt anymore. This is because the passive signal z0 contains almost

no information about dt before the agent chooses her information set. As a result, the agent

will not be able to choose different precisions according to the realization of dt. This result

is also shown in Figure 16 as the case for σz = 0. Moreover, in this case, the agent will not

necessarily choose a very noisy signal about the current state. The optimal precisions will

depend on the prior mean of the agent, which is X̂XX0 = 000 as in the baseline results. Such a

pattern then has an important implication: the weights on signals will not only depend on the

realized current state of the economy dt, it will also depend on the prior mean that the agent

carried on across time. I will illustrate how the optimal weights change with the prior mean

in the next subsection.
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Figure 16: Weights on Signals: Noise on Passive Signal σz

Left panel: model implied weights on current signal as function of actual economic condition dt. Right panel:

model implied weights on SPF signal. Each set of weights corresponds to a different standard error of noise

in the passive signal σz. The baseline results come from σz = 0.18.

E.7.2 Impact of “Internal State”: Prior Mean

Intuitively, when an agent chooses the information set she uses to form expectations, her ex-

ante belief about the future state should matter. This can be seen directly from (30): when

the agent thinks about future state dt+1 before she chooses information set that will generate

ZZZt, her effective prior mean should be:

X̂XX t|0 = (I −K0G0)X̂XX0 +K0z0 (67)

From previous sections, I have shown that the current state of economy dt will affect her choice

of optimal precision through the passive signal z0. For the same reason, the optimal precision

on signals should depend on the prior mean X̂XX0 as well.

The illustration of the impact of prior mean involves several parts. First I want the change

of optimal precision to come solely from the differences of X̂XX0, so I will keep z0 at a fixed

value. Secondly, the reason why the prior mean will affect the optimal precision choice is

that the agent will use the information set {I0} = {XXX t|0} to evaluate her expected utility.

The prior mean vector X̂XX0 will affect this information set thus affecting the agent’s expected

benefit for any precision level. As discussed in section E.3, when the prior makes the agent

believe on average the future state will be worse, she will choose a signal will higher precision.

A straightforward way to illustrate this point is to depict the optimal weights and standard

errors of the signals as functions of the implied posterior mean on dt+1 using the ex-ante

information set I0. For simplicity, I call this “ex-ante belief on dt+1”, defined as:

E[dt+1|I0] = ιA

(
(I −K0G0)X̂XX0 +K0z0

)
(68)
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In Figure 17, I show the optimal weights and standard errors as function of E[dt+1|I0], while

fixing z0 = 0 and dt = 0. This means the variation of the ex-ante belief comes solely from the

differences in X̂XX0.

Figure 17: Weights and Standard Error of Signals: Functions of Prior Beliefs

Left panel: model implied weights on current and future signal as functions of prior mean beliefs on the future

state. Right panel: model implied standard error of the noises attached to current and future signal. The blue

curves are for future (SPF) signal and red curves are for current signal.

Figure 17 shows that the optimal choices of weights (left panel) and precision (in terms of

standard error, right panel) indeed depend on the agent’s prior belief. In particular, when the

prior belief leads to on average a bad state in the future, the agent will first pay more attention

to the current signal, then shift to SPF signal as the implied state getting worse. This piece of

evidence is also consistent with my empirical finding. As the prior mean is accumulated from

the history of signals and usually not observable in the data, it can then be thought of as a

proxy of the “internal state” in my empirical section. As discussed in Section 4.2.4, both the

current state of the economy and the internal state accumulated from the past signals play a

role in creating the state-dependent marginal effects of signals.
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